【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
参考答案:
【答案】(Ⅰ)
(Ⅱ)1.
【解析】试题分析: (Ⅰ)根据椭圆几何性质得线段
长度的最大值为
,且
,解出
,得椭圆
的方程;(Ⅱ)利用点斜式设直线方程,与椭圆方程联立,结合韦达定理及弦长公式可得底边
长(用斜率及
表示);利用点到直线距离公式得三角形的高(用斜率及
表示);根据圆心到切线距离等于半径得斜率与
关系,代入面积公式并化简得关于
的函数关系式,最后利用基本不等式求最值.
试题解析:解:(Ⅰ)∵圆
过椭圆
的短轴端点,∴
,又∵线段
长度的最大值为3,
∴
,即
,
∴椭圆
的标准方程为
.
(Ⅱ)由题意可设切线
的方程为
,即
,则
,得
.①
联立得方程组
消去
整理得
.
其中
,
设
,
,则
,
,
则
.②
将①代入②得
,∴
,
而
,等号成立当且仅当
,即
.
综上可知:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照
,
分成9组,制成了如图所示的频率直方图.
(1)求直方图中
的值并估计居民月均用电量的中位数;(2)从样本里月均用电量不低于700度的用户中随机抽取4户,用
表示月均用电量不低于800度的用户数,求随机变量
的分布列及数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放,该设备可以将废气转化为某种化工产品和符合排放要求的气体,经测算,制药厂每天利用设备处理废气的综合成本
(元)与废气处理量
(吨)之间的函数关系可近似地表示为
,且每处理
吨工业废气可得价值为
元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定位20吨时,那么工厂需要每天投入的废气处理资金为多少元?
(2)若该制药厂每天废气处理量计划定为
吨,且工厂不用投入废气处理资金就能完成计划的处理量,求
的取值范围;(3)若该制药厂每天废气处理量计划定为
(
)吨,且市政府决定为处理每吨废气至少补贴制药厂
元以确保该厂完成计划的处理量总是不用投入废气处理资金,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券,赛后,中国男篮主力易建联荣膺本届亚锦赛
(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.

注:(1)表中
表示出手
次命中
次;(2)
(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中
超过50%的概率;(2)从上述9场比赛中随机选择一场,求易建联在该场比赛中
至少有一场超过60%的概率;(3)用
来表示易建联某场的得分,用
来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断
与
之间是否具有线性相关关系?结合实际简单说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是( )
A. (0,1) B. (-∞,1)
C. (0,+∞) D. (-∞,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校举行物理竞赛,有8名男生和12名女生报名参加,将这20名学生的成绩制成茎叶图如图所示.成绩不低于80分的学生获得“优秀奖”,其余获“纪念奖”.
(Ⅰ)求出8名男生的平均成绩和12 名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.

相关试题