【题目】某房地产开发公司计划在一楼区内建造一个长方形公园
,公园由长方形的休闲区
(阴影部分)和环公园人行道组成.已知休闲区
的面积为4000平方米,人行道的宽分别为4米和10米.
(1)若设休闲区的长
米,求公园
所占面积
关于
的函数
的解析式;
(2)要使公园所占面积最小,休闲区
的长和宽该如何设计?
![]()
参考答案:
【答案】(1)
;(2)要使公园所占面积最小,休闲区
的长为100米,宽为40米.
【解析】试题分析:本题为函数应用问题,首先要要认真细致的审题,逐字逐句的读题,建立函数模型,把实际问题转化为数学问题.注意函数的定义域,实际问题要注意实际要求,建立函数关系后,有时利用基本不等式求最值,但要注意等号成立的条件,有时利用二次函数求最值,有时还需要借助导数研究函数的单调性求最值.
试题解析:
由
,知![]()
(2)
![]()
当且仅当
即
时取等号
∴要使公园所占面积最小,休闲区
的长为100米,宽为40米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若函数
在实数集
上的图象是连续不断的,且对任意实数
存在常数
使得
恒成立,则称
是一个“关于
函数”.现有下列“关于
函数”的结论:①常数函数是“关于
函数”;②正比例函数必是一个“关于
函数”;③“关于
函数”至少有一个零点;④
是一个“关于
函数”.其中正确结论的序号是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,

(Ⅰ)求证:平面PED⊥平面PAC;
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为
,求二面角A﹣PC﹣D的平面角的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)求函数
的单调区间;(2)已知点
和函数
图像上动点
,对任意
,直线
倾斜角都是钝角,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个抛物线型的拱桥,当水面离拱顶2 m时,水宽4 m,若水面下降1 m,求水的宽度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据下列条件,分别求抛物线的标准方程:
(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;
(2)抛物线的焦点F在x轴上,直线y=-3与抛物线交于点A,AF=5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图已知椭圆C:
+y2=1,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0).设圆T与椭圆C交于点M与点N. 
(1)求
的最小值;
(2)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:丨OR丨丨OS丨为定值.
相关试题