【题目】设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.
(1)求常数b的值;
(2)当a=1时,讨论函数f(x)的单调性;
(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.
参考答案:
【答案】
(1)解:对f(x)求导得:
f'(x)=﹣aln(x+1)+ ![]()
根据条件知f'(0)=0,所以1﹣b=0,
故b=1
(2)解:当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞)
f'(x)=﹣ln(x+1)+
﹣1=﹣ln(x+1)+
﹣2
令f'(x)=0,则导函数零点x+1=1,故x=0;
当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;
当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减
(3)解:由(1)知,f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1
f'(x)=﹣aln(x+1)+
﹣1
f'(x)=﹣ ![]()
①当a
时,因为0≤x≤1,有f'(x)≥0,于是f'(x)在[0,1]上单调递增,从而f'(x)≥f'(0)=0,
因此f(x)在[0,1]上单调递增,即f(x)≥f(0)而且仅有f(0)=0;
②当a≥0时,因为0≤x≤1,有f'(x)<0,于是f'(x)在[0,1]上单调递减,从而f'(x)≤f'(0)=0,
因此f(x)在[0,1]上单调递减,即f(x)≤f(0)=0而且仅有f(0)=0;
③当﹣
<a<0时,令m=min{1,﹣
},当0≤x≤m时,f'(x)<0,于是f'(x)在[0,m]上单调递减,从而f'(x)≤f'(0)=0
因此f(x)在[0,m]上单调递减,即f(x)≤f(0)而且仅有f(0)=0;
综上:所求实数a的取值范围是(﹣∞,﹣
]
【解析】(1)对f(x)求导,根据条件知f'(0)=0,所以1﹣b=0;(2)当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞);令f'(x)=0,则导函数零点x+1=1,故x=0;
当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减;(3)因为f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1,对a进行分类讨论根据函数的单调性求得参数a使得不等式f(x)≥0;
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的中心在原点O,焦点在x轴上,离心率为
,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2
+
|=|2
﹣
|,求直线在y轴上截距的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
为定义域
上的奇函数,且在
上是单调递增函数,函数
,数列
为等差数列,
,且公差不为0,若
,则
( )A. 45 B. 15 C. 10 D. 0
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,将
的图象向右平移两个单位长度,得到函数
的图象.(1)求函数
的解析式;(2)若方程
在
上有且仅有一个实根,求
的取值范围;(3)若函数
与
的图象关于直线
对称,设
,已知
对任意的
恒成立,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设m, n是两条不同的直线,
是三个不同的平面, 给出下列四个命题:①若m⊥α,n∥α,则m⊥n;; ②若α∥β, β∥r, m⊥α,则m⊥r;
③若m∥α,n∥α,则m∥n;; ④若α⊥r, β⊥r,则α∥β.
其中正确命题的序号是 ( )
A.
①和② B. ②和③ C. ③和④ D. ①和④ -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系xOy中,圆C的方程为(x﹣
)2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ=
(p∈R)与圆C交于点M,N,求线段MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知过原点的动直线l与圆
相交于不同的两点A,B.(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
相关试题