【题目】某学生在假期进行某种小商品的推销,他利用所学知识进行了市场调查,发现这种商品当天的市场价格与他的进货量(件)加上20成反比.已知这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元.若每天的商品都能卖完,求这个学生一天的最大利润是多少?获得最大利润时每天的进货量是多少件?
参考答案:
【答案】解:由题意,设市场价格y元,他的进货量为x件,则y=
,
∵这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元,
∴100=(
﹣2)×100,∴k=360,
∴利润L=(
﹣2)x,
设x+20=t(t≥20),则L=400﹣(
+2t)≤400﹣240=160,
当且仅当
=2t,即t=60,x=40时,最大利润是160元
【解析】根据这种商品当天的市场价格与他的进货量(件)加上20成反比,这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元,求出比例系数,可得利润函数,再换元,利用基本不等式,即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于无穷数列
,记
,若数列
满足:“存在
,使得只要
(
且
),必有
”,则称数列
具有性质
.(Ⅰ)若数列
满足
判断数列
是否具有性质
?是否具有性质
?(Ⅱ)求证:“
是有限集”是“数列
具有性质
”的必要不充分条件;(Ⅲ)已知
是各项为正整数的数列,且
既具有性质
,又具有性质
,求证:存在整数
,使得
是等差数列. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥
的底面是边长为
的正方形,
底面
,
分别为
的中点.(Ⅰ)求证:
平面
;(Ⅱ)若
,试问在线段
上是否存在点
,使得二面角
的余弦值为
?若存在,确定点
的位置;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程
为人文类课程,课程
为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组
”).(Ⅰ)在“组
”中,选择人文类课程和自然科学类课程的人数各有多少?(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组
”中选择
课程或
课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择
课程的学生中有
人参加科学营活动,每人需缴纳
元,选择
课程的学生中有
人参加该活动,每人需缴纳
元.记选择
课程和
课程的学生自愿报名人数的情况为
,参加活动的学生缴纳费用总和为
元.①当
时,写出
的所有可能取值;②若选择
课程的同学都参加科学营活动,求
元的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x+
+b,其中a,b是常数且a>0.
(1)用函数单调性的定义证明f(x)在区间(0,
]上是单调递减函数;
(2)已知函数f(x)在区间[
,+∞)上是单调递增函数,且在区间[1,2]上f(x)的最大值为5,最小值为3,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组函数中,表示同一函数的是( )
A.
与g(x)=x﹣1
B.f(x)=2|x|与
C.
与
D.
与
相关试题