【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣ ,2]
B.[﹣ ]
C.[﹣2 ,2]
D.[﹣2 ]


参考答案:

【答案】A
【解析】解:当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,
即为﹣x2+x﹣3≤ +a≤x2﹣x+3,
即有﹣x2+ x﹣3≤a≤x2 x+3,
由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣
由y=x2 x+3的对称轴为x= <1,可得x= 处取得最小值
则﹣ ≤a≤
当x>1时,关于x的不等式f(x)≥| +a|在R上恒成立,
即为﹣(x+ )≤ +a≤x+
即有﹣( x+ )≤a≤ +
由y=﹣( x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2
由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.
则﹣2 ≤a≤2②
由①②可得,﹣ ≤a≤2.
故选:A.

关闭