【题目】下列函数中,是偶函数,且在区间(0,1)上为增函数的是( )
A.y=|x|
B.y=1﹣x
C.y= ![]()
D.y=﹣x2+4
参考答案:
【答案】A
【解析】解:对于A:y=|x|是由一次函数y=x图象将x的下部分翻折得到,在(0,1)上是增函数且偶函数,故A对.
对于B:y=1﹣x是一次函数,k<0,在(0,1)上是减函数,且是非奇非偶函数,故B不对.
对于C:y=
是反比例函数,图象在一三象限,在(0,1)上是减函数且奇函数,故C不对.
对于D:y=﹣x2+4是二次函数,开口向下,对称轴是y轴,在(0,1)上是减函数且偶函数,故D不对:
故选:A.
【考点精析】利用函数单调性的判断方法对题目进行判断即可得到答案,需要熟知单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,
轴正半轴为极轴建立坐标系,直线
的极坐标方程为
,曲线
的参数方程为
,(
为参数).(Ⅰ)求直线
的直角坐标方程和曲线
的普通方程;(Ⅱ)曲线
交
轴于
两点,且点
,
为直线
上的动点,求
周长的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,椭圆E的左右顶点分别为A、B,左右焦点分别为
、
,
,直线
交椭圆于C、D两点,与线段
及椭圆短轴分别交于
两点(
不重合),且
.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若
,设直线
的斜率分别为
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】若函数
在区间
上,
,
,
,
,
,
均可为一个三角形的三边长,则称函数
为“三角形函数”.已知函数
在区间
上是“三角形函数”,则实数
的取值范围为( )A.
B. 
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某省高考改革新方案,不分文理科,高考成绩实行“
”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体
,从学生群体
中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记
表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量
的分布列和数学期望;(III)将频率视为概率,现从学生群体
中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作
,求事件“
”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组函数中表示同一函数的是( )
A.
, 
B.
,g(x)=x+1
C.f(x)=|x|,
D.
,g(x)= 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知命题
:
,命题
.(1)若命题
为真命题,求实数
的取值范围;(2)若命题
为真命题,求实数
的取值范围;(3)若命题“
”为真命题,且命题“
”为假命题,求实数
的取值范围.
相关试题