【题目】若函数
在区间
上,
,
,
,
,
,
均可为一个三角形的三边长,则称函数
为“三角形函数”.已知函数
在区间
上是“三角形函数”,则实数
的取值范围为( )
A.
B. ![]()
C.
D. ![]()
参考答案:
【答案】D
【解析】试题分析:根据“三角形函数”的定义可知,若
在区间
上的“三角形函数”,则
在
上的最大值和最小值应满足
,由
可得
,所以
在
上单调递减,在
上单调递增,
,所以
,解得
的取值范围为
,故选A.
【方法点睛】本题主要考查了利用导数研究函数在闭区间上的最值,考查考生应用所学知识解决问题的能力,属于中档题.解答本题首先通过给出的定义把问题转化为函数的最值问题,通过导数研究其单调性,得到最小值,通过比较区间端点的函数值求出最大值,列出关于参数
的不等式,进而求得其范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下
方式
实施地点
大雨
中雨
小雨
模拟实验次数
A
甲
2次
6次
4次
12次
B
乙
3次
6次
3次
12次
C
丙
2次
2次
8次
12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲、乙、丙三地中缓解旱情的个数”为随机变量
,求
的分布列和数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,
轴正半轴为极轴建立坐标系,直线
的极坐标方程为
,曲线
的参数方程为
,(
为参数).(Ⅰ)求直线
的直角坐标方程和曲线
的普通方程;(Ⅱ)曲线
交
轴于
两点,且点
,
为直线
上的动点,求
周长的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,椭圆E的左右顶点分别为A、B,左右焦点分别为
、
,
,直线
交椭圆于C、D两点,与线段
及椭圆短轴分别交于
两点(
不重合),且
.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若
,设直线
的斜率分别为
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列函数中,是偶函数,且在区间(0,1)上为增函数的是( )
A.y=|x|
B.y=1﹣x
C.y=
D.y=﹣x2+4 -
科目: 来源: 题型:
查看答案和解析>>【题目】某省高考改革新方案,不分文理科,高考成绩实行“
”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体
,从学生群体
中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记
表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量
的分布列和数学期望;(III)将频率视为概率,现从学生群体
中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作
,求事件“
”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各组函数中表示同一函数的是( )
A.
, 
B.
,g(x)=x+1
C.f(x)=|x|,
D.
,g(x)= 
相关试题