【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当
时,求直线斜率的取值范围.
参考答案:
【答案】(1)
(2)![]()
【解析】试题分析:(Ⅰ)运用椭圆的离心率公式和直线和圆相切的条件:
可得
,结合
的关系,可得
进而得到椭圆方程;
(Ⅱ)设过点
的直线为
,代入椭圆方程
可得
的方程,运用判别式大于0和韦达定理,以及弦长公式,化简整理解不等式即可得到所求直线的斜率的范围.
试题解析:((Ⅰ)由题意可得e=
=
,
以x2+y2=b2的圆与直线x﹣y+
=0相切,可得
=b,即b=1,
即为a2﹣c2=1,
解得a=
,b=1,
即有椭圆方程为
+y2=1;
(Ⅱ)设过点M(2,0)的直线为y=k(x﹣2),
代入椭圆方程x2+2y2=2,可得
(1+2k2)x2﹣8k2x+8k2﹣2=0,
可得△=64k4﹣4(1+2k2)(8k2﹣2)>0,
即为﹣
<k<
,
设A(x1,y1),B(x2,y2),
即有x1+x2=
,x1x2=
,
由弦长公式可得|AB|=![]()
![]()
=![]()
=
,
由题意可得
<
,
化简可得56k4+38k2﹣13>0,
解得k2>
,即有k>
或k<﹣
,
综上可得直线的斜率的范围是![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2﹣mx+1﹣m2 , 若|f(x)|在[0,1]上单调递增,则实数m的取值范围 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC三个顶点坐标分别为:A(1,0),B(1,4),C(3,2),直线l经过点(0,4).
(1)求△ABC外接圆⊙M的方程;
(2)若直线l与⊙M相交于P,Q两点,且|PQ|=2
,求直线l的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2﹣lnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调递减区间:
(3)设函数g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e为自然对数的底数)
-
科目: 来源: 题型:
查看答案和解析>>【题目】设定义在区间
上的函数
的图象为
,
、
,且
为图象
上的任意一点,
为坐标原点,当实数
满足
时,记向量
,若
恒成立,则称函数
在区间
上可在标准
下线性近似,其中
是一个确定的正数.(1)设函数
在区间
上可在标准
下线性近似,求
的取值范围;(2)已知函数
的反函数为
,函数
,(
),点
、
,记直线
的斜率为
,若
,问:是否存在
,使
成立?若存在,求
的取值范围;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】一支车队有
辆车,某天依次出发执行运输任务。第一辆车于下午
时出发,第二辆车于下午
时
分出发,第三辆车于下午
时
分出发,以此类推。假设所有的司机都连续开车,并都在下午
时停下来休息.到下午
时,最后一辆车行驶了多长时间?如果每辆车的行驶速度都是
,这个车队当天一共行驶了多少
? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)当a=3时,解不等式f(x)>0;
(2)当x∈(﹣∞,2)时,f(x)<0恒成立,求a的取值范围.
相关试题