【题目】一个袋中装有四个形状大小完全相同的编号为1,2,3,4的球,从袋中随机抽取一个球,将其编号记为m,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为n,则关于x的一元二次方程
无实根的概率为__________。
参考答案:
【答案】![]()
【解析】
本题是一个古典概型,由分步计数原理知基本事件共12个,当m>0,n>0时,方程
无实根的充要条件为m<n,满足条件的事件中包含6个基本事件,由古典概型公式得到结果.
设事件A为“方程
无实根”.
当m>0,n>0时,方程
无实根的充要条件为m<n.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),
(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),
(4,2),(4,3),其中第一个数表示m的取值,第二个数表示n的取值.
事件A中包含6个基本事件:(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),
事件A发生的概率为p(A)=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a1 , a3 , a7成等比数列.
(1)求数列{an}的通项公式;
(2)若an≠a1时,数列{bn}满足bn=2
,求数列{bn}的前n项和Tn . -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(2)商店记录了50天该商品的日需求量(单位:件),整理得表:日需求量n
8
9
10
11
12
频数
10
10
15
10
5
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABC﹣A1B1C1是底面边长为2,高为
的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).、 
(1)证明:PQ∥A1B1;
(2)当
时,求点C到平面APQB的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的两个焦点分别为F1(﹣
,0),F2(
,0),且椭圆C过点P(3,2).
(1)求椭圆C的标准方程;
(2)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=2lnx﹣ax+a(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,证明:当0<x1<x2时,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是 BC边上的高,AE 是圆O的直径,过点C作圆O的切线交BA的延长线于点F.

(1)求证:ACBC=ADAE;
(2)若AF=2,CF=2
,求AE的长.
相关试题