【题目】已知函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,则x1+x2的值为________.
参考答案:
【答案】2
【解析】令f(x)=0,g(x)=0,得5x=-x+2,log5x=-x+2.作出函数y=5x,y=log5x,y=-x+2的图象,如图所示,因为函数f(x)=5x+x-2,g(x)=log5x+x-2的零点分别为x1,x2,所以x1是函数y=5x的图象与直线y=-x+2交点A的横坐标,x2是函数y=log5x的图象与直线y=-x+2交点B的横坐标.
![]()
因为y=5x与y=log5x的图象关于y=x对称,直线y=-x+2也关于y=x对称,且直线y=-x+2与它们都只有一个交点,故这两个交点关于y=x对称.又线段AB的中点是y=x与y=-x+2的交点,即(1,1),所以x1+x2=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.(1)求
到平面
的距离(2)在线段
上是否存在一点
,使
?若存在,求出
的值;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直三棱柱
中,
分别是
的中点, 且
,(1)证明:
.(2)棱
上是否存在一点
,使得平面
与平面
所成锐二面角的余弦值为
若存在,说明点
的位置,若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知向量
,
,设函数
.(1)若函数
的图象关于直线
对称,且
时,求函数
的单调增区间;(2)在(1)的条件下,当
时,函数
有且只有一个零点,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
,与
,
各有一个交点,当
时,这两个交点间的距离为2,当
,这两个交点重合.(1)分别说明
,
是什么曲线,并求出
与
的值;(2)设当
时,
与
,
的交点分别为
,当
,
与
,
的交点分别为
,求四边形
的面积.
相关试题