【题目】已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范围.
参考答案:
【答案】(1)最小值为2,最大值为6;(2)a>1时,解集为{x|0<x<1},0<a<1时,解集为{x|-1<x<0}.
【解析】试题分析:(1)根据函数单调性求函数最值(2)根据底与1的大小,分类讨论函数单调性,化简不等式,解出x的取值范围.
试题解析:
(1)当a=2时,f(x)=log2(1+x),
在[3,63]上为增函数,因此当x=3时,f(x)最小值为2.
当x=63时f(x)最大值为6.
(2)f(x)-g(x)>0即f(x)>g(x)
当a>1时,loga(1+x)>loga(1-x)
满足
∴0<x<1
当0<a<1时,loga(1+x)>loga(1-x)
满足
∴-1<x<0
综上a>1时,解集为{x|0<x<1}
0<a<1时解集为{x|-1<x<0}.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,
是抛物线
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
(1)求抛物线
的方程;(2)若点
的横坐标为
,直线
与抛物线
有两个不同的交点
与圆
有两个不同的交点
,求当
时,
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列
列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?愿意
不愿意
总计
男生
女生
总计
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考数据及公式:

0.1
0.05
0.025
0.01

2.706
3.841
5.024
6.635
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
,AD=CD=1.
(1)求证:BD⊥AA1.
(2)在棱BC上取一点E,使得AE∥平面DCC1D1,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=1+2x.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图像;
(3)写出函数f(x)的单调区间及值域.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员
名,其中种子选手
名;乙协会的运动员
名,其中种子选手
名.从这
名运动员中随机选择
人参加比赛.(1)设
为事件“选出的
人中恰有
名种子选手,且这
名种子选手来自同一个协会”求事件
发生的概率;(2)设
为选出的
人中种子选手的人数,求随机变量
的分布列和数学期望.
相关试题