【题目】设全集为R,函数
的定义域为M,则RM为( )
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)
参考答案:
【答案】A
【解析】解:要使函数
有意义,
则2﹣x≥0即x≤2.
∴M={x|x≤2}.
则RM=(2,+∞).
故选:A.
【考点精析】解答此题的关键在于理解集合的并集运算的相关知识,掌握并集的性质:(1)A
A∪B,B
A∪B,A∪A=A,A∪
=A,A∪B=B∪A;(2)若A∪B=B,则A
B,反之也成立,以及对函数的定义域及其求法的理解,了解求函数的定义域时,一般遵循以下原则:①
是整式时,定义域是全体实数;②
是分式函数时,定义域是使分母不为零的一切实数;③
是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,速度不得超过50千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为50(元/时).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出定义域;
(2)用单调性定义证明(1)中函数的单调性,并指出汽车应以多大速度行驶可使全程运输成本最小? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定义域为[0,1]时,值域也是[0,1],求b,c的值;
(2)若b=﹣2时,若函数g(x)=
对任意x∈[3,5],g(x)>c恒成立,试求实数c的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为( )
A.1
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x),g(x)都是定义在R上的函数,并满足:
1)f(x)=2axg(x),(a>0,a≠1);
2)g(x)≠0;
3)f(x)g′(x)<f′(x)g(x)且
+
=5,则a= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在△ABC内,AB=CP=2,BC=3,∠P+∠B=π,记∠B=α.

(1)试用α表示AP的长;
(2)求四边形ABCP的面积的最大值,并写出此时α的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统
一
二
三
四
五
安卓系统(元)
2
5
3
20
9
IOS系统(元)
4
3
18
9
7
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
独立性检验统计量
,其中n=a+b+c+d.
相关试题