【题目】如图,点P在△ABC内,AB=CP=2,BC=3,∠P+∠B=π,记∠B=α. ![]()
(1)试用α表示AP的长;
(2)求四边形ABCP的面积的最大值,并写出此时α的值.
参考答案:
【答案】
(1)解:△ABC与△APC中,AB=CP=2,BC=3,∠B=α,∠P=π﹣α,
由余弦定理得,AC2=22+32﹣2×2×3cosα,①
AC2=AP2+22﹣2×AP×2cos(π﹣α),②
由①②得:AP2+4APcosα+12cosα﹣9=0,α∈(0,π),
解得:AP=3﹣4cosα
(2)解:∵AP=3﹣4cosα,α∈(0,π),
∴S四边形ABCP=S△ABC﹣S△APC
=
×2×3sinα﹣
×2×APsin(π﹣α)
=3sinα﹣(3﹣4cosα)sinα
=4sinαcosα=2sin2α,α∈(0,π),
则当α=
时,Smax=2
【解析】(1)在三角形ABC中,由AB,BC及cosB,利用余弦定理列出关系式,记作①;在三角形APC中,由AP,PC及cosP,利用余弦定理列出关系式,记作②,由①②消去AC,得到关于AP的方程,整理后可用α表示AP的长;(2)由三角形的面积公式表示出三角形ABC及三角形APC的面积,两三角形面积之差即为四边形ABCP的面积,整理后将表示出的AP代入,根据正弦函数的图象与性质即可求出四边形ABCP的面积的最大值,以及此时α的值.
【考点精析】掌握余弦定理的定义是解答本题的根本,需要知道余弦定理:
;
;
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为( )
A.1
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设全集为R,函数
的定义域为M,则RM为( )
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x),g(x)都是定义在R上的函数,并满足:
1)f(x)=2axg(x),(a>0,a≠1);
2)g(x)≠0;
3)f(x)g′(x)<f′(x)g(x)且
+
=5,则a= . -
科目: 来源: 题型:
查看答案和解析>>【题目】某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统
一
二
三
四
五
安卓系统(元)
2
5
3
20
9
IOS系统(元)
4
3
18
9
7
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
独立性检验统计量
,其中n=a+b+c+d. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=log
(x2﹣2x)的单调递增区间是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1) -
科目: 来源: 题型:
查看答案和解析>>【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控
非微信控
合计
男性
26
24
50
女性
30
20
50
合计
56
44
100
(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?
(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望.
参考公式:
,其中n=a+b+c+d. P(K2≥k0)
0.50
0.40
0.25
0.05
0.025
0.010
k0
0.455
0.708
1.323
3.841
5.024
6.635
相关试题