【题目】如图,直线PA垂直于圆O所在的平面,△ABC内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中真命题的个数为( ) ![]()
A.3
B.2
C.1
D.0
参考答案:
【答案】A
【解析】解:∵PA⊥圆O所在的平面,BC圆O所在的平面∴PA⊥BC 而BC⊥AC,PA∩AC=A
∴BC⊥面PAC,而PC面PAC
∴BC⊥PC,故①正确;
∵点M为线段PB的中点,点O为AB的中点
∴OM∥PA,而OM面PAC,PA面PAC
∴OM∥平面APC,故②正确;
∵BC⊥面PAC
∴点B到平面PAC的距离等于线段BC的长,故③正确
故选A
【考点精析】利用直线与平面垂直的判定对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
-
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
已知
,在直角坐标系
中,直线
的参数方程为
(
为参数);在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程是
.(Ⅰ)求证:
;(Ⅱ)设点
的极坐标为
,
为直线
,
的交点,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱柱
中,侧棱
底面
,
,
,
是棱
的中点.(Ⅰ)证明:平面
平面
;(Ⅱ)求平面
将此三棱柱分成的两部分的体积之比.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱柱
中,侧面
底面
,
,
,点
,
分别是
,
的中点.
(1)证明:
平面
;(2)若
,
,求直线
与平面
所成角的正弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.

(1)根据已知条件完成下面的
列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?网购迷
非网购迷
合计
年龄不超过40岁
年龄超过40岁
合计
(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数
的分布列与期望.附:
;
0.15
0.10
0.05
0.01

2.072
2.706
3.841
6.635
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a>0且a≠1,函数f(x)=
(a﹣x﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的单调性(不要求证明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】若二面角α﹣L﹣β的大小为
,此二面角的张口内有一点P到α、β的距离分别为1和2,则P点到棱l的距离是( )
A.
B.2
C.2
D.2
相关试题