【题目】已知F1、F2分别是双曲线
﹣
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )
A.![]()
B.![]()
C.![]()
D.2
参考答案:
【答案】A
【解析】解:设F1F2=2c,由题意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22 ,
又根据曲线的定义得:
F1P﹣F2P=2a,
平方得:F1P2+F2P2﹣2F1P×F2P=4a2
从而得出F1F22﹣2F1P×F2P=4a2
∴F1P×F2P=2(c2﹣a2)
又当△PF1F2的面积等于a2
即
F1P×F2P=a2
2(c2﹣a2)=a2∴c=
a,
∴双曲线的离心率e=
=
.
故选A.
先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
△
中,
,
,
分别为边
的中点,点
分别为线段
的中点.将△
沿
折起到△
的位置,使
.点
为线段
上的一点,如图2.
(Ⅰ)求证:
;(Ⅱ)线段
上是否存在点
使得
平面
?若存在,求出
的长,若不存在,请说明理由;(Ⅲ)当
时,求直线
与平面
所成角的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.

(Ⅰ)求
的值;(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取
人,用
表示身高在
以上的男生人数,求随机变量
的分布列和数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},则A∩B=( )
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[
,+∞) -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx和反比例函数
在同一坐标系中的图象大致是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
,…,
分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中
的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由; -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2+mx+n有两个零点﹣1与3.
(1)求出函数f(x)的解析式,并指出函数f(x)的单调递增区间;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函数,求实数t的取值范围.
相关试题