【题目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},则A∩B=( )
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[
,+∞)
参考答案:
【答案】D
【解析】解:∵集合A={x|y=2x+1},可得x∈R,
∴A={x|x∈R},
∵B={y|y=x2+x+1,x∈R},y=x2+x+1=(x﹣
)2+
,
∴B={y|y≥
},
∴A∩B={x|x≥
},
故选D;
【考点精析】关于本题考查的集合的交集运算和二次函数的性质,需要了解交集的性质:(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,则A
B,反之也成立;当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
的上下顶点分别为
,且点
.
分别为椭圆
的左、右焦点,且
. (Ⅰ)求椭圆
的标准方程;(Ⅱ)点
是椭圆上异于
,
的任意一点,过点
作
轴于
,
为线段
的中点.直线
与直线
交于点
,
为线段
的中点,
为坐标原点.求
的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
△
中,
,
,
分别为边
的中点,点
分别为线段
的中点.将△
沿
折起到△
的位置,使
.点
为线段
上的一点,如图2.
(Ⅰ)求证:
;(Ⅱ)线段
上是否存在点
使得
平面
?若存在,求出
的长,若不存在,请说明理由;(Ⅲ)当
时,求直线
与平面
所成角的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.

(Ⅰ)求
的值;(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取
人,用
表示身高在
以上的男生人数,求随机变量
的分布列和数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知F1、F2分别是双曲线
﹣
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )
A.
B.
C.
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx和反比例函数
在同一坐标系中的图象大致是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
,…,
分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中
的值;(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使
的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由;
相关试题