2024年零失误分层训练高中数学必修第一册人教版B版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年零失误分层训练高中数学必修第一册人教版B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
分解以下因式:(1)$3a^{3}b - 81b^{4}$;(2)$a^{7}-ab^{6}$.
答案:
解:
(1)$3a^{3}b - 81b^{4}=3b(a^{3}-27b^{3})=3b(a - 3b)(a^{2}+3ab + 9b^{2})$.
(2)$a^{7}-ab^{6}=a(a^{6}-b^{6})=a(a^{3}+b^{3})(a^{3}-b^{3})=a(a + b)(a^{2}-ab + b^{2})(a - b)(a^{2}+ab + b^{2})=a(a + b)(a - b)(a^{2}+ab + b^{2})(a^{2}-ab + b^{2})$.
(1)$3a^{3}b - 81b^{4}=3b(a^{3}-27b^{3})=3b(a - 3b)(a^{2}+3ab + 9b^{2})$.
(2)$a^{7}-ab^{6}=a(a^{6}-b^{6})=a(a^{3}+b^{3})(a^{3}-b^{3})=a(a + b)(a^{2}-ab + b^{2})(a - b)(a^{2}+ab + b^{2})=a(a + b)(a - b)(a^{2}+ab + b^{2})(a^{2}-ab + b^{2})$.
1.(教材改编题)已知集合$A = \{x\in\mathbf{Z}\mid0\leqslant x < 3\}$,$B = \{x\mid - 1 < x\leqslant1\}$,则$A\cap B$等于( )
A. $\{0,1\}$
B. $\{0,1,2\}$
C. $\{x\mid - 1 < x < 3\}$
D. $\{x\mid0\leqslant x\leqslant1\}$
A. $\{0,1\}$
B. $\{0,1,2\}$
C. $\{x\mid - 1 < x < 3\}$
D. $\{x\mid0\leqslant x\leqslant1\}$
答案:
A[提示:$A = \{0,1,2\}$,故$A\cap B = \{0,1,2\}\cap\{x\mid - 1 < x\leqslant1\} = \{0,1\}$.]
2.(2024·辽宁大连八中月考)已知集合$A = \{0,2\}$,$B = \{ - 2,-1,0,1,2\}$,则$A\cap B$等于( )
A. $\{0,2\}$
B. $\{1,2\}$
C. $\{0\}$
D. $\{ - 2,-1,0,1,2\}$
A. $\{0,2\}$
B. $\{1,2\}$
C. $\{0\}$
D. $\{ - 2,-1,0,1,2\}$
答案:
A[提示:由$A = \{0,2\}$,$B = \{ - 2,-1,0,1,2\}$,可得$A\cap B = \{0,2\}$.]
3.(2023·辽宁葫芦岛第一高级中学高一月考)若集合$M = \{x\mid\sqrt{x}<4\}$,$N = \{x\mid3x\geqslant1\}$,则$M\cap N$等于( )
A. $\{x\mid0\leqslant x < 2\}$
B. $\left\{x\mid\frac{1}{3}\leqslant x < 2\right\}$
C. $\{x\mid3\leqslant x < 16\}$
D. $\left\{x\mid\frac{1}{3}\leqslant x < 16\right\}$
A. $\{x\mid0\leqslant x < 2\}$
B. $\left\{x\mid\frac{1}{3}\leqslant x < 2\right\}$
C. $\{x\mid3\leqslant x < 16\}$
D. $\left\{x\mid\frac{1}{3}\leqslant x < 16\right\}$
答案:
D[提示:$M = \{x\mid0\leqslant x < 16\}$,$N = \{x\mid x\geqslant\frac{1}{3}\}$,故$M\cap N = \{x\mid\frac{1}{3}\leqslant x < 16\}$.]
4.(2023·山东德州一中高一月考)设集合$A = \{ - a,a^{2},0\}$,$B = \{2,4\}$,若$A\cap B = \{4\}$,则实数$a$的值为( )
A. $\pm2$
B. 2或 - 4
C. 2
D. $\pm4$
A. $\pm2$
B. 2或 - 4
C. 2
D. $\pm4$
答案:
B[提示:因为$A\cap B = \{4\}$,所以$4\in A$,即$a = - 4$或$a^{2}=4$.当$a = - 4$时,$A = \{16,4,0\}$,$A\cap B = \{4\}$,符合题意.当$a^{2}=4$时,解得$a = 2$或$a = - 2$,若$a = 2$,则$A = \{ - 2,4,0\}$,$A\cap B = \{4\}$,符合题意,若$a = - 2$,则$A = \{2,4,0\}$,$A\cap B = \{2,4\}$,不符合题意,所以$a = 2$或$a = - 4$,所以实数$a$的值为2或 - 4.]
5.(教材改编题)已知集合$A = \{x\mid0\leqslant x\leqslant3\}$,$B = \{x\mid1\leqslant x < 4\}$,则$A\cup B$等于( )
A. $\{x\mid1 < x\leqslant3\}$
B. $\{x\mid0\leqslant x < 4\}$
C. $\{x\mid1\leqslant x\leqslant3\}$
D. $\{x\mid0 < x < 4\}$
A. $\{x\mid1 < x\leqslant3\}$
B. $\{x\mid0\leqslant x < 4\}$
C. $\{x\mid1\leqslant x\leqslant3\}$
D. $\{x\mid0 < x < 4\}$
答案:
B[提示:
∵集合$A = \{x\mid0\leqslant x\leqslant3\}$,$B = \{x\mid1\leqslant x < 4\}$,
∴$A\cup B = \{x\mid0\leqslant x < 4\}$.]
∵集合$A = \{x\mid0\leqslant x\leqslant3\}$,$B = \{x\mid1\leqslant x < 4\}$,
∴$A\cup B = \{x\mid0\leqslant x < 4\}$.]
6.(2024·山东青岛二中月考)已知集合$A = \{1,3,a^{2}\}$,$B = \{1,a + 2\}$,$A\cup B = A$,则实数$a$的值为( )
A. 2
B. - 1或2
C. 1或2
D. 0或2
A. 2
B. - 1或2
C. 1或2
D. 0或2
答案:
A[提示:由$A\cup B = A$知$B\subseteq A$,当$a + 2 = 3$,即$a = 1$时,$a^{2}=1$,此时$A = \{1,3,1\}$,与集合中元素互异性矛盾,不符合;当$a + 2 = a^{2}$,即$a = - 1$或$a = 2$时,若$a = - 1$,则$a^{2}=1$,此时$A = \{1,3,1\}$,与集合中元素互异性矛盾,不符合;若$a = 2$,则$A = \{1,3,4\}$,$B = \{1,4\}$,满足要求.综上,$a = 2$.]
7.已知$A = \{1,2,a + 3\}$,$B = \{a,5\}$,若$A\cup B = A$,则$a$等于( )
A. 0
B. 1
C. 2
D. 3
A. 0
B. 1
C. 2
D. 3
答案:
C[提示:
∵$A = \{1,2,a + 3\}$,$B = \{a,5\}$,$A\cup B = A$,
∴$B\subseteq A$,
∴$a + 3 = 5$,解得$a = 2$.]
∵$A = \{1,2,a + 3\}$,$B = \{a,5\}$,$A\cup B = A$,
∴$B\subseteq A$,
∴$a + 3 = 5$,解得$a = 2$.]
8.(2023·辽宁凤城一中高一月考)已知集合$A = \{x\mid1 < x\leqslant a\}$,$B = \{x\mid1 < x < 2\}$,若$A\cup B = A$,则实数$a$的取值范围是______.
答案:
$a\geqslant2$[提示:
∵$A\cup B = A$,
∴$B\subseteq A$,
∴$a\geqslant2$.]
∵$A\cup B = A$,
∴$B\subseteq A$,
∴$a\geqslant2$.]
9.(教材改编题)已知集合$A = \{x\mid - 1\leqslant x < 3\}$,$B = \{x\mid1 < x\leqslant5\}$,则$A\cap(\complement_{\mathbf{R}}B)$等于( )
A. $(-\infty,1)\cup(5,+\infty)$
B. $[-1,1]$
C. $[-1,5]$
D. $[-3,5]$
A. $(-\infty,1)\cup(5,+\infty)$
B. $[-1,1]$
C. $[-1,5]$
D. $[-3,5]$
答案:
B[提示:由$B = \{x\mid1 < x\leqslant5\}$,得$\complement_{\mathbf{R}}B = (-\infty,1]\cup(5,+\infty)$,又$A = \{x\mid - 1\leqslant x < 3\}$,所以$A\cap(\complement_{\mathbf{R}}B) = [-1,1]$.]
10.(2023·湖南雅礼中学期末)设全集$U = \{ - 2,-1,0,1,2,3\}$,集合$A = \{ - 1,2\}$,$B = \{x\mid x^{2}-4x + 3 = 0\}$,则$\complement_{U}(A\cup B)$等于( )
A. $\{1,3\}$
B. $\{0,3\}$
C. $\{ - 2,0\}$
D. $\{ - 2,1\}$
A. $\{1,3\}$
B. $\{0,3\}$
C. $\{ - 2,0\}$
D. $\{ - 2,1\}$
答案:
C[提示:
∵$B = \{x\mid x^{2}-4x + 3 = 0\} = \{1,3\}$,$A = \{ - 1,2\}$,
∴$A\cup B = \{ - 1,1,2,3\}$,
∵$U = \{ - 2,-1,0,1,2,3\}$,
∴$\complement_{U}(A\cup B) = \{ - 2,0\}$.]
∵$B = \{x\mid x^{2}-4x + 3 = 0\} = \{1,3\}$,$A = \{ - 1,2\}$,
∴$A\cup B = \{ - 1,1,2,3\}$,
∵$U = \{ - 2,-1,0,1,2,3\}$,
∴$\complement_{U}(A\cup B) = \{ - 2,0\}$.]
11.(2024·上海高一上期末联考)若全集$U = \{3,-3,a^{2}+2a - 3\}$,$A = \{a + 1,3\}$,且$\complement_{U}A = \{5\}$,求实数$a$的值.
答案:
解:由题意可知$5\in U$,$-3\in A$,则$\begin{cases}a + 1 = - 3\\a^{2}+2a - 3 = 5\end{cases}$,解得$a = - 4$,所以实数$a$的值为 - 4.
查看更多完整答案,请扫码查看