【题目】如图:小刚站在河边的
点处,在河的对面(小刚的正北方向)的
处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树
处,接着再向前走了30步到达
处,然后他左转
直行,当小刚看到电线塔、树与自己现处的位置
在一条直线时,他共走了140步.
![]()
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点
处时他与电线塔的距离,并说明理由.
参考答案:
【答案】(1)见解析;(2) 40米.
【解析】
(1)根据题意所述画出示意图即可.
(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.
解:(1)所画示意图如下:
![]()
(2)在
和
中,
,
∴
,
∴
,
又∵小刚共走了140步,其中
走了60步,
∴走完
用了80步,
小刚一步大约50厘米,即
米
米.
答:小刚在点
处时他与电线塔的距离为40米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).
(1)求反比例函数与一次函数的表达式;
(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y=
的图象有且只有一个交点,求a的值; (3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.

(1)求证:直线DE是⊙O的切线;
(2)若AC=6,BC=8,OA=2,求线段AD和DE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不与B、C两点重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上取一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接AM、AN.

(1)若P为BC的中点,则sin∠CPM=________;
(2)求证:∠PAN的度数不变;
(3)当P在BC边上运动时,△ADM的面积是否存在最小值,若存在,请求出PB的长;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(
表示乌龟从起点出发所行的时间,
表示乌龟所行的路程,
表示兔子所行的路程).①“龟兔再次赛跑”的路程为______米;
②兔子比乌龟晚出发______分钟;
③乌龟在途中休息了______分钟;
④乌龟的速度是______米/分;
⑤兔子的速度是______米/分;
⑥兔子在距起点______米处追上乌龟.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题:探究函数的图象与性质.
小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
在函数
中,自变量
可以是任意实数;(1)下表是
与
的几组对应值.
…
-3
-2
-1
0
1
2
3
…

…
1
0
-1
-2
-1
0

…
①
______;②若
,
为该函数图象上不同的两点,则
______;(2)如图,在平面直角坐标系
中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;(3)根据函数图象可得函数的性质:
①该函数的最小值为______;
②再写出该函数一条性质____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+
与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.
(1)如图1,求抛物线的顶点坐标;
(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;
(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.
相关试题