【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
![]()
(1)求证:直线DE是⊙O的切线;
(2)若AC=6,BC=8,OA=2,求线段AD和DE的长.
参考答案:
【答案】(1)见解析;(2)4.75.
【解析】试题分析:(1)连接OD,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB+∠ODA=90°,进而得出OD⊥DE,根据切线的判定即可得出结论;
(2)连接OE,作OH⊥AD于H.则AH=DH,由△AOH∽△ABC,可得
,推出AH=
,AD=
,设DE=BE=x,CE=8-x,根据OE2=DE2+OD2=EC2+OC2,列出方程即可解决问题;
试题解析:
(1)证明:连接OD,
![]()
∵EF垂直平分BD,
∴EB=ED,
∴∠B=∠EDB,
∵OA=OD,
∴∠ODA=∠A,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠EDB+∠ODA=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
(2)解:连接OE,作OH⊥AD于H.则AH=DH,
∵△AOH∽△ABC,
∴
,
∴
,
∴AH=
,AD=
,设DE=BE=x,CE=8﹣x,
∵OE2=DE2+OD2=EC2+OC2 ,
∴42+(8﹣x)2=22+x2 ,
解得x=4.75,
∴DE=4.75.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,Rt△ABC中,∠BAC=90°,AB=5,AC=12,将△ABC沿射线BC方向平移m个单位长度到△DEF,顶点A、B、C分别与D、E、F对应,若以点A、D、E为顶点的三角形是等腰三角形,则m的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).
(1)求反比例函数与一次函数的表达式;
(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y=
的图象有且只有一个交点,求a的值; (3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不与B、C两点重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上取一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接AM、AN.

(1)若P为BC的中点,则sin∠CPM=________;
(2)求证:∠PAN的度数不变;
(3)当P在BC边上运动时,△ADM的面积是否存在最小值,若存在,请求出PB的长;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:小刚站在河边的
点处,在河的对面(小刚的正北方向)的
处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树
处,接着再向前走了30步到达
处,然后他左转
直行,当小刚看到电线塔、树与自己现处的位置
在一条直线时,他共走了140步.
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点
处时他与电线塔的距离,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(
表示乌龟从起点出发所行的时间,
表示乌龟所行的路程,
表示兔子所行的路程).①“龟兔再次赛跑”的路程为______米;
②兔子比乌龟晚出发______分钟;
③乌龟在途中休息了______分钟;
④乌龟的速度是______米/分;
⑤兔子的速度是______米/分;
⑥兔子在距起点______米处追上乌龟.

相关试题