【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2. ![]()
(1)求证:BC⊥D1E;
(2)若平面BCC1B1与平面BED1所成的锐二面角的大小为
,求线段D1E的长度.
参考答案:
【答案】
(1)解:证明:∵底面ABCD和侧面BCC1B1是矩形,∴BC⊥CD,BC⊥CC1,
又∵CD∩CC1=C,∴BC⊥平面DCC1D1,
∵D1E平面DCC1D1,∴BC⊥D1E;
(2)解:由(1)可知BC⊥D1E,
又∵D1E⊥CD,且BC∩CD=C,
∴D1E⊥平面ABCD.
设G为AB的中点,以E为原点,EG,EC,ED1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图.
则E(0,0,0),B(1,1,0),C(0,1,0),G(1,0,0).
设D1E=a,则D1(0,0,a),B1(1,2,a).
设平面BED1的一个法向量为
=(x,y,z),
=(1,1,0),
=(0,0,a),
由
,令x=1,得
=(1,﹣1,0);
设平面BCC1B1的一个法向量为
=(x1,y1,z1),
=(1,0,0),
=(﹣1,1,a),
由
,令z1=1,得
=(0,﹣a,1).
由平面BCC1B1与平面BED1所成的锐二面角的大小为
,
得|cos<
>|=|
=|cos
=
,解得a=1.
∴D1E=1.
![]()
【解析】(1)由已知底面ABCD和侧面BCC1B1是矩形,可得BC⊥CD,BC⊥CC1 , 由线面垂直的判定可得BC⊥平面DCC1D1 , 进一步得到BC⊥D1E;(2)由(1)可知BC⊥D1E,结合D1E⊥CD,可得D1E⊥平面ABCD.设G为AB的中点,以E为原点,EG,EC,ED1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,求出平面BED1的一个法向量与平面BCC1B1的一个法向量,由平面BCC1B1与平面BED1所成的锐二面角的大小为
列式求得a值,则线段D1E的长度可求.
【考点精析】通过灵活运用空间中直线与直线之间的位置关系,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,数列
的前n项和为Sn , 数列{bn}的通项公式为bn=n﹣8,则bnSn的最小值为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}的首项a1=4,当n≥2时,an﹣1an﹣4an﹣1+4=0,数列{bn}满足bn=

(1)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(2)若cn=4bn(nan﹣6),如果对任意n∈N* , 都有cn+
t≤2t2 , 求实数t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.

(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据:
=25,
=5.36,
=0.64
回归方程
=
x+
中斜率和截距的最小二乘估计公式分别为:
=
,
=
﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是__.
(2)连接NB,若AB=8cm,△NBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆E:
=1(a>b>0)的左焦点F1(﹣
,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F
(1)求椭圆E的方程;
(2)过坐标原点O的直线交椭圆W:
=1于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(a为常数,a>0) (Ⅰ)若
是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在
上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在
,使不等式f(x0)>m(1﹣a2)成立,求实数m的取值范围.
相关试题