【题目】如图所示,四边形ABCD的对角线AC、BD交于点O,若OE=OF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)求证:四边形DEBF是平行四边形;
(3)若OD=OE=OF,则四边形DEBF是什么特殊的四边形,请证明.
![]()
参考答案:
【答案】见解析
【解析】整体分析:
(1)用ASA证明△BOE≌△DOF;(2)连接DE、BF,用对角线互相平分的四边形是平行四边形证明;(3)四边形DEBF是平行四边形,且对角线相等.
(1)证明:∵DF∥BE,
∴∠DFE=∠BEO,
在△BOE和△DOF中,
∠DFE=∠BEO,OF=OE,∠DOF=∠EOB,
∴△BOE≌△DOF.
(2)证明:连接DE、BF.
∵△BOE≌△DOF,
∴OD=OB,∵OE=OF,
∴四边形DEBF是平行四边形.
![]()
(3)若OD=OE=OF,则四边形DEBF是矩形.
理由:∵OD=OE=OF=OB,
∴BD=EF,
∵四边形DEBF是平行四边形,
∴四边形DEBF是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A、C在反比例函数y=
的图象上,点B,D在反比例函数y=
的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=
,CD=
,AB与CD间的距离为6,则a﹣b的值是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为
,
,
,
,那么可以转换为该生所在班级序号,其序号为
.如图2第一行数字从左到右依次为0,1,0,1,序号为
,表示该生为5班学生.表示6班学生的识别图案是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某运动员在一场篮球比赛中的技术统计如表所示:
技术
上场时间(分钟)
出手投篮(次)
投中
(次)罚球得分
篮板
(个)助攻(次)
个人总得分
数据
46
66
22
10
11
8
60
注:表中出手投篮次数和投中次数均不包括罚球.
根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.

(1)求证:PF平分∠BFD.
(2)若tan∠FBC=
,DF=
,求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】星期天,李玉刚同学随爸爸妈妈会老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km/h.设爸爸骑行时间为x(h).
(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;
(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;
(3)请回答谁先到达老家。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2
,点H是BD上的一个动点,求HG+HC的最小值.
相关试题