【题目】如图,在反比例函数y=
(x>0)的图象上有点P1、P2、P3、P4 , P5 , 它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1 , S2 , S3 , S4 , 则S1+S2+S3+S4的值为( ) ![]()
A.4.5
B.4.2
C.4
D.3.8
参考答案:
【答案】C
【解析】解:当x=10时,y=
=
, ∴点P5(10,
).
∴S1+S2+S3+S4=
﹣S矩形BCOD=k﹣2×
=4.
故选C.
由反比例函数图象上点的坐标特征求出点P5的坐标,把所有的阴影部分向左平移,则所有阴影部分的面积恰好等于矩形P1ABC的面积,再利用矩形的面积公式结合反比例函数系数k的几何意义即可求出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠ACB=90°,AC=BC=
,D、E是AB边上的两个动点,满足∠DCE=45°. 
(1)如图②,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK.
①求证:△DCE≌△KCE.
②求证:DE2=AD2+BE2 .
③思考与探究:当点D从点A向AB的中点运动的过程中,请尝试写出DE长度的变化趋势
;并直接写出DE长度的最大值或最小值
(标明最大值或最小值).
(2)如图③,若△CDE的外接圆⊙O分别交AC,BC于点F、G,求证:CF:CG=BE:AD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】宜宾市开展“创建全国文明城市”活动,城区某校倡议学生利用双休日在“市政广场”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,绘制了不完整的统计图,根据以下图中信息,回答下列问题:

(1)将条形统计图补充完整;
(2)填空:被调查学生劳动时间的众数是______;中位数是________;
(3)求所有被调查同学的平均劳动时间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)
选修课
A
B
C
D
E
F
人数
20
30
根据图标提供的信息,下列结论错误的是( )

A.这次被调查的学生人数为200人
B.扇形统计图中E部分扇形的圆心角为72°
C.被调查的学生中最想选F的人数为35人
D.被调查的学生中最想选D的有55人 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A,B在数轴上对应的实数分别是a,b,其中a,b满足|a﹣2|+(b+1)2=0.
(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程x﹣1=
x+1的解,在数轴上是否存在点P,使PA+PB=PC,若存在,求出点P对应的数;若不存在,说明理由;(3)在(1)和(2)的条件下,点A,B,C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,设运动时间为t秒,试探究:随着时间t的变化,AB与BC满足怎样的数量关系?请写出相应的等式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为( )

A.20
B.25
C.30
D.40
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图像与反比例函数
的图像交于点
和点
.(1)求一次函数和反比例函数的解析式;
(2)直接写出不等式
的解集;(3)若点A关于y轴的对称点为C,问是否在x轴下方存在一点D,使以点A、B、C、D为顶点的四边形是平行四边形.若存在,直接写出点D的坐标;若不存在,请说明理由.

相关试题