【题目】在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有
![]()
A. ①②④ B. ②③④ C. ①②⑤ D. ③④⑤
参考答案:
【答案】C
【解析】
①两个不同的三角形中有两个角相等,那么第三个角也相等;
②根据ASA进而得出△A1BF≌△CBE,即可得出A1E=CF;
③∠CDF=α,而∠C与顺时针旋转的度数不一定相等,所以DF与FC不一定相等;
④AE不一定等于CD,则AD不一定等于CE,
⑤用角角边可证明△A1BF≌△CBE后可得A1F=CE.
∵△ABC绕点B顺时针旋转α度,得到△A1BC1,
∴∠CBC1=α,∠C=∠C1,
∵∠BFC1=∠DFC,
∴∠CDF=∠CBC1=α,故①正确,
∵AB=BC,
∴∠A=∠C,
∴∠C=∠A1
在△A1BF和△CBE中,
∠C=∠A1,A1B=BC,∠A1BF=∠CBE,
∴△A1BF≌△CBE,
∴BE=BF,A1F=CE,故⑤正确,
∵A1B=BC,
∴A1B-BE=BC-BF,即A1E=CF,故②正确,
∵∠CDF=α,α是可变化的角,∠C是固定角,
∴∠CDF不一定等于∠C,
∴DF不一定等于CF,故③错误,
∵AE不一定等于CD,
∴AD不一定等于CE,故④错误.
综上所述:①②⑤正确,
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABO中,∠OBA=90°,AB=OB,点C在边AB上,且C(6,4),点D为OB的中点,点P为边OA上的动点,当∠APC=∠DPO时,点P的坐标为 ____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-4,-1),B(-5,-4),C(-1,-3).

(1)画△A'B'C',使△A'B'C'与△ABC关于y轴对称;
(2)在y轴上作一点P,使得PA+PC最短;
(3)将△ABC向右平移m个单位,向上平移n个单位,若点A落在第二象限内,且点C在第四象限内,则m的范围是 ,n的范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某所中学七、八、九年级各有6个班级,每个班级人数为50左右,根据实际情况,决定开设“A:乒乓球,B:篮球,C:跑步,D:跳绳”这四种项目.为了解学生喜欢哪一种项目,该学校体育组随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)样本容量是________,请你为体育组提供一种较为合理的抽样方案;
(2)把条形统计图补充完整;
(3)该校贝贝、晶晶、洋洋和妮妮是学校的校园之星,现要从这四人中选出两人作为“阳光体育”运动形象代言人,贝贝和晶晶同时被抽到的概率是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.

(1)求证:AD∥EF;
(2)求证:△AFG是等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MON=90°,点A、B分别在边ON和OM上(∠OAB≠45°).

(1)根据要求,利用尺规作图,补全图形:
第①步:作∠MON的平分线OC,作线段AB的垂直平分线l,OC和l交于点P,第②步:连接PA、PB;
(2)结合补完整的图形,判断PA和PB有什么数量关系和位置关系?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价、售价如下表所示:

(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
相关试题