【题目】一个圆柱体包装盒,高40cm,底面周长20cm.现将彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图1),然后用这条平行四边形纸带按如图2的方式把这个圆柱体包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕四圈,正好将这个圆柱体包装盒的侧面全部包贴满,则所需的纸带AD的长度为_____ cm.
![]()
参考答案:
【答案】20
【解析】分析:根据圆柱体包装盒,高40cm,纸带在侧面缠绕四圈,正好将这个圆柱包装盒的侧面全部包贴满,可得出BF,AB的长度,由勾股定理得到AF的长度,即可得到结果.
详解:根据包贴方法可得展开图如下:过点F作FE⊥BC于E,
∵纸带在侧面缠绕四圈,正好将这个三棱柱包装盒的侧面全部包贴满,
∵圆柱体的高40cm, ∴FB=
cm,AB=20,
在Rt△ABF中,AF=
, ∵DF=2AF=
, ∴AD=AF+DF=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
为
轴负半轴上的一个点,过点
作
轴的垂线,交函数
的图像于点
,交函数
的图像于点
,过点
作
轴的平行线,交
于点
,连接
.
(1)当点
的坐标为(–1,0)时,求
的面积;(2)若
,求点
的坐标;(3)连接
和
.当点
的坐标为(
,0)时,
的面积是否随
的值的变化而变化?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形
的两条边
、
分别在
轴和
轴上,已知点
坐标为(4,–3).把矩形
沿直线
折叠,使点
落在点
处,直线
与
、
、
的交点分别为
、
、
.(1)线段
;(2)求点
坐标及折痕
的长;(3)若点
在
轴上,在平面内是否存在点
,使以
、
、
、
为顶点的四边形是菱形?若存在,则请求出点
的坐标;若不存在,请说明理由;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴上,并且OA=OC=4OB,动点P在过A、B、C三点的抛物线上.
(1)求抛物线的函数表达式;
(2)在直线AC上方的抛物线上,是否存在点P,使得△PAC的面积最大?若存在,求出P点坐标及ΔPAC面积的最大值;若不存在,请说明理由.
(3)在x轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰直角三角形
的边
,等腰直角三角形
的边
,且
,点
、
、
放置在一条直线上,联结
.(1)求三角形
的面积;(2)如果点
是线段
的中点,联结
、
得到三角形
,求三角形
的面积;(3)第(2)小题中的三角形
与三角形
面积哪个较大?大多少?(结果都可用
、
代数式表示,并化简)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
是对角线
上不同的两点,下列条件中,不能得出四边形
一定为平行四边形的是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<
时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.
相关试题