【题目】(6分)下面是小马虎解的一道题
题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.
解:根据题意可画出图,
![]()
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.
参考答案:
【答案】小马不会得满分的.见解析.
【解析】
试题在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.
试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,
当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,
故∠AOC的度数是55°或85°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.

请根据统计图表提供的信息,解答下列问题:
(1)参加调查的人数共有△人;在扇形图中,m=△;将条形图补充完整;
(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?
(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中
,
,将
沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是


A. 3 B.
C. 5 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.

(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .

如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .

(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.

在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一张直角三角形纸片ABC,边
,
,
,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为


A. 16 B. 17 C. 18 D. 19
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一张三角形纸片ABC,其中
,
,
现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处
这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是


A.
B.
C.
D. 
相关试题