【题目】如图∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.
![]()
证明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
参考答案:
【答案】垂直定义;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行
【解析】
试题根据垂直的定义及平行线的判定和性质依次分析即可.
∵CF⊥AB ,DE⊥AB (已知)
∴∠BED=90° ,∠BFC=90°( 垂直定义 )
∴∠BED=∠BFC ( 等量代换 )
∴ED∥FC ( 同位角相等,两直线平行 )
∴∠1=∠BCF ( 两直线平行,同位角相等 )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( 等量代换 )
∴FG∥BC ( 内错角相等,两直线平行 )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将斜边长为4,∠A为30°角的Rt△ABC绕点B顺时针旋转120°得到△A′C′B,弧
、
是旋转过程中A、C的运动轨迹,则图中阴影部分的面积为( )
A.4π+2
B.
π﹣2
C.
π+2
D.4π -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD于点F,求证:四边形EBFD是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E是△ABC中BC边上的一点,且BE=
BC;点D是AC上一点,且AD=
AC,S△ABC=24,则S△BEF﹣S△ADF=( ) 
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】小刚在课外书中看到这样一道有理数的混合运算题:
计算:

她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。
(1)前后两部分之间存在着什么关系?
(2)先计算哪步分比较简便?并请计算比较简便的那部分。
(3)利用(1)中的关系,直接写出另一部分的结果。
(4)根据以上分析,求出原式的结果。
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)9+(﹣7)+10+(﹣3)+(﹣9)
(2)12+(﹣14)+6+(﹣7)
(3)﹣

(4)﹣4.2+5.7+(﹣8.7)+4.2.
相关试题