【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D. ![]()
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
参考答案:
【答案】
(1)解:∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QPC=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+BC=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=
QC,即6﹣x=
(6+x),解得x=2,
∴AP=2
(2)解:当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
在△APE和△BQF中,
∵∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
,
∴△APE≌△BQF(AAS),
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=
EF,
∵EB+AE=BE+BF=AB,
∴DE=
AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.
![]()
【解析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=
QC,即6﹣x=
(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=
AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为( )
A.6B.10C.4D.6或10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:

(1)点F为AC的中点;
(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知两个相似三角形的对应边之比为1:3,则它们的周长比为( )
A. 1:9 B. 9:1 C. 1:6 D. 1:3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,
①若△POA的面积是△POB面积的
倍.求点P的坐标;②当四边形AOBP的面积最大时,求点P的坐标;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有一种记分的方法:80分以上如88分记为+8分,某个学生在记分表上记为﹣6分,则这个学生的分数应该是( )分.
A.74
B.﹣74
C.86
D.﹣86 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,点P是正方形ABCD的BC边上的一点,以DP为边长的正方形DEFP与正方形ABCD在BC的同侧,连接AC、FB.
(1)请你判断FB与AC又怎样的位置关系?并证明你的结论;
(2)若点P在射线CB上运动时,如图②,判断(1)中的结论FB与AC的位置关系是否仍然成立?并说明理由;
(3)当点P在直线CB上运动时,请你指出点E的运动路线,不必说明理由.

相关试题