【题目】如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 ![]()
参考答案:
【答案】0
【解析】解:设抛物线与x轴的另一个交点是Q,![]()
∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),
∴与x轴的另一个交点Q(﹣2,0),
把(﹣2,0)代入解析式得:0=4a﹣2b+c,
∴4a﹣2b+c=0,
所以答案是:0.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O的半径为3,△ABC内接于⊙O,AB=3
,AC=3
,D是⊙O上一点,且AD=3,则CD的长应是( )
A.3
B.6
C.
D.3或6 -
科目: 来源: 题型:
查看答案和解析>>【题目】圆的半径扩大到原来的3倍,周长扩大到原来的____倍.面积扩大到原来的_______倍.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a>0)的顶点为P,其图像与x轴有两个交点A(﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法:
①m=3;
②当∠APB=120°时,a=
;
③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;
④抛物线上存在点N,当△ABN为直角三角形时,有a≥
正确的是( )
A.①②
B.③④
C.①②③
D.①②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,EP交AB于点F,FD∥AC交BC于点D.求证:△AEF是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE∥BF,∠1与∠2互补.
(1)试说明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC的一边长为5,另两边长分别是二次函数y=x2﹣6x+m与x轴的交点坐标的横坐标的值,则m的取值范围为
相关试题