【题目】如图,DE∥BF,∠1与∠2互补.
(1)试说明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.
![]()
参考答案:
【答案】(1)证明见解析;
(2)DE与AC垂直,理由见解析.
【解析】(1)根据两直线平行,同旁内角互补可得∠2+∠DBF=180°,再根据∠1+∠2=180°可得∠1=∠DBF,最后根据内错角相等,两直线平行即可证明;
(2)根据(1)中所证出的FG∥AB,可得∠A=∠CFG=60°,再根据三角形外角等于与它不相邻的两个内角的和,即可求出∠AED=90°,根据垂直定义可得出结论.
证明:(1)∵DE∥BF,
∴∠2+∠DBF=180°,
∵∠1与∠2互补,
∴∠1+∠2=180°,
∴∠1=∠DBF,
∴FG∥AB;
(2)DE与AC垂直
理由:∵FG∥AB,∠CFG=60°,
∴∠A=∠CFG=60°,
∵∠2是△ADE的外角,
∴∠2=∠A+∠AED,
∵∠2=150°,
∴∠AED=150°-60°=90°,
∴DE⊥AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a>0)的顶点为P,其图像与x轴有两个交点A(﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法:
①m=3;
②当∠APB=120°时,a=
;
③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;
④抛物线上存在点N,当△ABN为直角三角形时,有a≥
正确的是( )
A.①②
B.③④
C.①②③
D.①②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为P,EP交AB于点F,FD∥AC交BC于点D.求证:△AEF是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC的一边长为5,另两边长分别是二次函数y=x2﹣6x+m与x轴的交点坐标的横坐标的值,则m的取值范围为
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A,O,分别与两坐标轴的正半轴交于点E,F.当EF⊥OA时,此时EF= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.

(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)在△ABC中,AC=4米,∠ABC=45°,试求小明家圆形花坛的半径长.
相关试题