【题目】在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.
![]()
(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是____________,位置关系是____________;
(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;
(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.
参考答案:
【答案】(1)AG=EG,AG⊥EG;(2)见解析;(3)2
.
【解析】
试题分析:(1)如图1,由平移得,EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵CF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,
,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.故答案为AG=EG,AG⊥EG.
![]()
(2)(1)中的结论仍然成立,
证明:如图2,由平移得,EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵CF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,
,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.
![]()
(3)由(1)有,AG=CG,AG⊥EG,∴∠GEA=45°,∵∠AGF=120°,∴∠AGB=∠CGB,=30°,∴∠FGE=∠CGB=∠CGE=30°,∴∠CEG=75°,∴∠AED=30°,在Rt△ADE中,AD=2,∴DE=2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各式因式分解
(1)a(a-3)+2(3-a)
(2)

(3)
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.
(1)如果AB=AC,试猜想四边形ADCF的形状,并证明你的结论;
(2)△ABC满足什么条件时四边形ADCF为正方形,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的E处,那么下列等式成立的是( )

A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;

(2)若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)求出三角形ABC的面积
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将平行四边形 ABCD 沿对角线 BD 折叠,使点 A 落在A′处,若∠1=∠2=50°,则∠A′的度数为( )

A.100°B.105°C.110°D.115°
-
科目: 来源: 题型:
查看答案和解析>>【题目】对两实数
,
定义一种新运算,规定
.例如:
.(1)填空:
________;
________.(2)若
,求
的值.(3)若
,
为整数,且
,求满足条件的所有
,
的值.
相关试题