【题目】安宁市的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,若经粗加工后销售,每吨利润可达4500元;若经精加工后销售每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了四种可行方案: 方案一:全部直接销售;
方案二:全部进行粗加工;
方案三:尽可能多地进行精加工,没有来得及进行精加工的直接销售;
方案四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.
请通过计算以上四个方案的利润,帮助企业选择一个最佳方案使所获利润最多?
参考答案:
【答案】解:方案一可获利润:140×1000=140000(元); 方案二可获利润:4500×140=630000(元);
方案三可获利润:15×6×7500+(140﹣15×6)×1000=725000(元);
方案四:设精加工x吨食蔬菜,则粗加工(140﹣x)吨蔬菜,
根据题意得:
+
=15,
解得:x=60,
∴140﹣x=80.
此情况下利润为:60×7500+80×4500=810000(元),
∵140000<630000<725000<810000,
∴企业选择方案四所获利润最多
【解析】根据总利润=单吨利润×销售质量即可求出方案一、二、三的利润,在方案四种,设精加工x吨食蔬菜,则粗加工(140﹣x)吨蔬菜,根据每天可精加工6吨或粗加工16吨结合加工总天数为15天即可得出关于x的一元一次方程,解之即可得出x的值,进而得出140﹣x的值,再根据总利润=精加工部分的利润+粗加工部分的利润求出方案四的利润,将四种方案获得的利润比较后即可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华在“科技创新大赛”中制作了一个创意台灯作品,现忽略支管的粗细,得到它的侧面简化结构图如图所示.已知台灯底部支架CD平行于水平面,FE⊥OE,GF⊥EF,台灯上部可绕点O旋转,OE=20cm,EF=20
cm.(1)如图1,若将台灯上部绕点O逆时针转动,当点G落在直线CD上时,测量得∠EOG=65°,求FG的长度(结果精确到0.1cm);
(2)将台灯由图1位置旋转到图2的位置,若此时F,O两点所在的直线恰好与CD垂直,求点F在旋转过程中所形成的弧的长度.(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,
≈1.73,可使用科学计算器)
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:x3-64x=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E,G分别在边AB,对角线BD上,EG∥AD,F为GD的中点,连结FC,请利用勾股定理的逆定理,证明EF⊥FC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为正三角形ABC内一点,PA=2,PB=4,PC=2
,则正三角形ABC的面积为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C(0,﹣3).
(1)求此二次函数的解析式.
(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.
(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?
相关试题