【题目】综合题
(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表:![]()
设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为 , 点C的坐标为 .
(2)将设抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2 , 则当x=-3时,y2= .
(3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3 . 设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)P(1,4),C(0,3)
(2)12
(3)解:存在.
当y1=0时,-x2+2x+3=0,解得x1=-1,x2=3,则A(-1,0),B(3,0),
∵抛物线m1沿水平方向平移,得到抛物线m3,
∴CK∥AM,CK=AM,
∴四边形AMKC为平行四边形,
当CA=CK时,四边形AMKC为菱形,而AC=
,则CK=
,
当抛物线m1沿水平方向向右平移
个单位,此时K(
,3);当抛物线m1沿水平方向向左平移
个单位,此时K(-
,3)
【解析】解:(1)把(-1,0),(1,4),(2,3)分别代入y1=a1x2+b1x+c1得
,解得
.
所以抛物线m1的解析式为y1=-x2+2x+3=-(x-1)2+4,则P(1,4),
当x=0时,y=3,则C(0,3);
( 2 )因为抛物线m1沿x轴翻折,得到抛物线m2,
所以y2=(x-1)2-4,当x=-3时,y2=(x+1)2-4=(-3-1)2-4=12.
【考点精析】根据题目的已知条件,利用坐标与图形变化-平移的相关知识可以得到问题的答案,需要掌握新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一副直角三角板如图①放置(其中
,
),
、
与直线
重合,且三角板
,三角板
均可以绕点
逆时针旋转.(l)直接写出
等于多少度.(2)如图②,若三角板
保持不动,三角板
绕点
逆时针旋转,转速为
/秒,转动一周三角板
就停止转动,在旋转的过程中,当旋转时间为多少时,有
成立.(3)如图③,在图①基础上,若三角板
的边
从
.处开始绕点
逆时针旋转,转速为
/秒,同时三角板
的边
从
处开始绕点
逆时针旋转,转速为
/秒,(当
转到与
重合时,两三角板都停止转动),在旋转过程中,当
,求旋转的时间是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
∵
,
,
,……
,∴

=

=
=
.解答下列问题:
(1)在和式
中,第6项为______,第n项是__________.(2)上述求和的想法是通过逆用分式减法法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项的和为_______,从而达到求和的目的.
(3)受此启发,请你解下面的方程:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:a+
,其中a=1007.如图是小亮和小芳的解答过程.
(1)_________的解法是错误的;
(2)错误的原因在于未能正确地运用二次根式的性质:_________;
(3)先化简,再求值:a+2
,其中a=-2007. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,⊙A与y轴相切于点B(0,
),与x轴相交于M,N两点,如果点M的坐标为(
,0),求点N的坐标
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,要得到△ABD≌△ACE,从下列条件中补选一个,则错误的是( )

A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为( );并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.
相关试题