【题目】如图,矩形ABCD中,AB=8,BC=4,将△ADC沿AC折叠,点D落在点D′处,CD′与AB交于点F. ![]()
(1)求线段AF的长.
(2)求△AFC的面积.
(3)点P为线段AC(不含点A、C)上任意一点,PM⊥AB于点M,PN⊥CD′于点N,试求PM+PN的值.
参考答案:
【答案】
(1)解:∵四边形ABCD是矩形,
∴∠B=90°,AB∥CD,
∴∠DCA=∠BAC,
∵矩形沿AC折叠,点D落在点E处,
∴△ACD≌△ACE,
∴∠DCA=∠ECA,
∴∠BAC=∠ECA,
∴AF=CF,
设AF=CF=x,则BF=8﹣x,
在Rt△BCF中,根据勾股定理得:BC2+BF2=CF2,
即42+(8﹣x)2=x2,
解得:x=5,
∴AF=5;
(2)解:S△ACF=
AFBC=
×5×4=10;
(3)解:连接PF,
×AF×PM+
×CF×PN=S△ACF=10,
∴PM+PN=4.
![]()
【解析】(1)根据矩形的性质和翻折变换的性质得到AF=CF,设AF=x,根据勾股定理列出方程,解方程即可求出AF;(2)根据三角形面积公式计算即可;(3)连接PF,根据三角形的面积公式解答即可.
【考点精析】根据题目的已知条件,利用矩形的性质和翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.
(1)请画出△ABC关于原点O对称的△A1B1C1;
(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“日啖荔枝三百颗,不辞长作岭南人”,广东的夏季盛产荔枝,桂味、糯米糍是荔枝的品种之一.佳佳同学先用52元购买2千克桂味和1千克糯米糍;几天后,他用76元购买1千克桂味和3千克糯米糍.(前后两次两种荔枝的售价不变)
(1)求桂味、糯米糍的售价分别是每千克多少元?
(2)若佳佳同学用y元买了这两种荔枝共中10千克,设买了x千克桂味. ①写出y与x的函数关系式.
②若要求糯米糍的重量不少于桂味重量的3倍,请帮佳佳同学设计一个购买方案,使所需的费用最少,并求出最少费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】若等腰三角形的一个外角为50°,则它的底角为_________度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形OABC是平行四边形,点A(2,2)和点C(6,0),连结CA并延长交y轴于点D.

(1)求直线AC的函数解析式.
(2)若点P从点C出发以2个单位/秒沿x轴向左运动,同时点Q从点O出发以1个单位/秒沿x轴向右运动,过点P、Q分别作x轴垂线交直线CD和直线OA分别于点E、F,猜想四边形EPQF的形状(点P、Q重合除外),并证明你的结论.
(3)在(2)的条件下,当点P运动多少秒时,四边形EPQF是正方形? -
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解:﹣2x3+18x.
-
科目: 来源: 题型:
查看答案和解析>>【题目】

(1)如图1,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C,连接C1B1,则C1B1与BC的位置关系为_______;
(2)如图2,当△ABC是锐角三角形,∠ABC=α(α≠60°)时,将△ABC按照(1)中的方式旋转α,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;
(3)如图3,在图2的基础上,连接B1B,若C1B1=
BC,△C1BB1的面积为4,则△B1BC的面积为 .
相关试题