【题目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如图(1),CD平分∠ACB交AB于点D,BE⊥CD于点E,延长BE、CA相交于点F,请猜想线段BE与CD的数量关系,并说明理由.
(2)如图(2),点F在BC上,∠BFE=
∠ACB,BE⊥FE于点E,AB与FE交于点D,FH∥AC交AB于H,延长FH、BE相交于点G,求证:BE=
FD;
(3)如图(3),点F在BC延长线上,∠BFE=
∠ACB,BE⊥FE于点E,FE交BA延长线于点D,请你直接写出线段BE与FD的数量关系(不需要证明).
![]()
参考答案:
【答案】(1)BE=
CD.(2)证明见解析;(3)BE=
FD.证明见解析.
【解析】
(1)先利用AAS证明△ABF≌△ACD,得到BF=CD,再利用ASA证明△BCE≌△FCE,从而得到BE=FE=
BF,进而得出BE=
CD;
(2)利用“等角对等边”证明BH=FH,再通过证明△BFE≌△GFE,得到BE=
GB,再证明△BHG≌△FHD,得到BG=FD,从而得到BE=
FD;
(3)利用相同的方法可得BF和FD的关系.
(1)猜想:BE=
CD.
理由:∵BE⊥CD,∠BAC=90°,∠BDE=∠ADC,
∴∠ABF=∠ACD,∠BAF=∠BAC.
在△ABF和△ACD中,
,
∴△ABF≌△ACD(AAS).
∴BF=CD.
∵CD平分∠ACB,
∴∠BCE=∠FCE.
∵BE⊥CD,
∴∠BEC=∠FEC=90°.
在△BCE和△FCE中,
,
∴△BCE≌△FCE(ASA).
∴BE=FE=
BF.
∴BE=
CD.
(2)证明:∵AB=AC,FH∥AC
∴∠ABC=∠ACB,∠BFH=∠ACB.
∴∠BHF=∠BAC=90°.∠ABC=∠BFH.
∴BH=FH.
∵∠BFE=
∠ACB,
∴∠EFG=
∠ACB.
∴∠BFE=∠EFG.
∵BE⊥FE,
∴∠BEF=∠GEF.
在△BFE和△GFE中,
,
∴△BFE≌△GFE(ASA).
∴BE=GE.
∴BE=
GB.
在△BHG和△FHD中,
,
∴△BHG≌△FHD(ASA).
∴BG=FD,
∴BE=
FD.
(3)BE=
FD.
证明:过点F作GF∥AC,交BE,AD延长线于点G,H
∴∠BFG=∠ACB
∵∠BFE=
∠ACB
∴∠BFE=∠GFE
在△FBE和△FBG中
,
∴△FBE≌△FBG(ASA)
∴∠EFB=∠EFG
BE=EG=
BG
∵FG∥AC
∴∠BAC=∠BHF=90°
在四边形GEDH中
∠G+∠EDG=180°
又∵∠HDF+∠EDH=180°
∴∠HDF=∠G
在△DHF和△GHB中
,
∴△DHF≌△GHB(AAS)
∴BG=DF
∴BE=
FD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,BC=15,斜边AB的垂直平分线与∠CAB的平分线都交BC于D点,则点D到斜边AB的距离为___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.
(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;
(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):

(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;
(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;
(3)求OE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:
x(元/件)
38
36
34
32
30
28
26
t(件)
4
8
12
16
20
24
28
假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,OA=OB,点P为△ABO的角平分线的交点,若PN⊥PA交x轴于N,延长OP交AB于M,写出AO,ON,PM之间的数量关系,并证明之.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1关于x轴对称.
(1)作△ABC关于x轴对称的△A1B1C1,直接写出点A1坐标;
(2)在y轴上有一点P使AP+A1P最小,直接写出点P的坐标;
(3)请直接写出点A关于直线x=m(直线上各点的横坐标都为m)对称的点的坐标.

相关试题