【题目】一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.
(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;
(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.
参考答案:
【答案】
(1)解:从箱子中随机摸出一个球,摸出的球是编号为1的球的概率为:
;
(2)解:画树状图如下:
![]()
共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为
.
【解析】(1)直接利用概率公式求解即可;(2)首先列出树状图,然后利用概率公式求解即可.
【考点精析】本题主要考查了列表法与树状图法和概率公式的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:

(1)该样本的容量是 , 样本中捐款15元的学生有人;
(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.
(1)如图1,若∠BAD=90°,AD=2,求CD的长度;
(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°
∠ADC;(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,BC=15,斜边AB的垂直平分线与∠CAB的平分线都交BC于D点,则点D到斜边AB的距离为___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):

(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;
(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;
(3)求OE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如图(1),CD平分∠ACB交AB于点D,BE⊥CD于点E,延长BE、CA相交于点F,请猜想线段BE与CD的数量关系,并说明理由.
(2)如图(2),点F在BC上,∠BFE=
∠ACB,BE⊥FE于点E,AB与FE交于点D,FH∥AC交AB于H,延长FH、BE相交于点G,求证:BE=
FD;(3)如图(3),点F在BC延长线上,∠BFE=
∠ACB,BE⊥FE于点E,FE交BA延长线于点D,请你直接写出线段BE与FD的数量关系(不需要证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:
x(元/件)
38
36
34
32
30
28
26
t(件)
4
8
12
16
20
24
28
假定试销中每天的销售量t(件)与销售价x(元/件)之间满足一次函数.
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)
相关试题