【题目】用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.
第(1)个图形中有1个正方形;
第(2)个图形有1+3=4个小正方形;
第(3)个图形有1+3+5=9个小正方形
第(5)个图形有 个小正方形(直接写出结果);
(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n﹣1)= (用含n的代数式表示);
(2)请根据你的发现计算:①1+3+5+7+…+99= ;②101+103+105+…+199= .
参考答案:
【答案】25;(1)n2;(2)①2500,②7500
【解析】
根据已知图形得出第2个图形比第1个图形多:4-1=3个;第3个图形比第2个图形多:9-4=5个;第4个图形比第3个图形多:16-9=7个;即可得出后面一个图形比前面一个图形多的个数是连续奇数,进而得出公式第n个图形比第(n-1)个图形多2n-1个小正方形;由此利用规律得出答案即可.
解:由题意得:第(5)个图形有:1+3+5+7+9=25个小正方形;
(1)1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
…
∴1+3+5+7+…+(2n﹣1)=
=n2
(2)①1+3+5+7+…+99=
=502=2500;
②∵1+3+5+…+199=
=10000,
1+3+5+7+…+99=
=502=2500,
∴101+103+105+…+199=10000﹣2500=7500.
故答案为:25,(1)n2,(2)①2500,②7500.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:

(1)将下面的表格补充完整:
正多边形边数
3
4
5
6
…
n
∠α的度数
60°
45°
…
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:
≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°
理由:连接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:

①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明
②如图3是二环五边形,可得S= ,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后的结果)

-
科目: 来源: 题型:
查看答案和解析>>【题目】
(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=
BC.(不需要证明)
(探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
(应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=
x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.
(1)点A的坐标为 ,点B的坐标为 ;
(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;
(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
相关试题