【题目】
(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=
BC.(不需要证明)
![]()
(探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
(应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
参考答案:
【答案】(1)见解析;(2)AC=BD.
【解析】
探究:连结AC,由四个中点可得EF∥AC且EF=
AC、GH∥AC且GH=
AC,据此可得EF∥GH,且EF=GH,从而得证;
应用:添加AC=BD,连接BD,由EF=
AC、EH=
BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;
探究:平行四边形,
证明:连结AC,
∵E、F分别是AB、BC的中点,
∴EF∥AC,且EF=
AC.
∵G、H分别是CD、AD的中点,
∴GH∥AC,且GH=
AC.
∴EF∥GH,且EF=GH.
∴四边形EFGH是平行四边形.
![]()
应用:
AC=BD;
连接BD,
∵EF=
AC、EH=
BD,且AC=BD,
∴EF=EH,
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
故答案为:AC=BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:
≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°
理由:连接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:

①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明
②如图3是二环五边形,可得S= ,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后的结果)

-
科目: 来源: 题型:
查看答案和解析>>【题目】用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.
第(1)个图形中有1个正方形;
第(2)个图形有1+3=4个小正方形;
第(3)个图形有1+3+5=9个小正方形
第(5)个图形有 个小正方形(直接写出结果);
(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n﹣1)= (用含n的代数式表示);
(2)请根据你的发现计算:①1+3+5+7+…+99= ;②101+103+105+…+199= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=
x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.
(1)点A的坐标为 ,点B的坐标为 ;
(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;
(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠MAN=120°,AC平分∠MAN.
(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

相关试题