【题目】如图,点 D,E 在△ABC的边 BC上,连接AD,AE.下面有三个等式:①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题Ⅰ“如果①② 成立,那么③成立”; 命题Ⅱ“如果①③成立,那么②成立”;命题Ⅲ“如果②③成立,那么①成立”.
(1)以上三个命题是真命题的为__________(直接作答);
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
![]()
参考答案:
【答案】(1)Ⅰ,Ⅱ,Ⅲ;(2)证明见解析.
【解析】
(1)根据真命题的定义即可得出结论,
(2)根据全等三角形的判定方法及全等三角形的性质即可证明.
解:(1)Ⅰ,Ⅱ,Ⅲ,
故答案为:Ⅰ,Ⅱ,Ⅲ.
(2)选择命题Ⅱ“如果①③成立,那么②成立”;
证明:∵AB=AC,
∴∠B=∠C,
在△ABD 和△ACE 中,
,
∴△ABD≌△ACE(SAS),
∴AD=AE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若分式
□
运算结果为x,则在“□”中添加的运算符号为( )
A.+
B.﹣
C.+或×
D.﹣或÷ -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC在正方形网格中的位置如图所示,则点P是△ABC的( )

A.外心
B.内心
C.三条高线的交点
D.三条中线的交点 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数. 小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好比原来的两位数大9.”那么,你能回答以下问题吗?
他们取出的两张卡片上的数字分别是多少?
第一次,他们拼成的两位数是多少?
第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
-
科目: 来源: 题型:
查看答案和解析>>【题目】实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成. 现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?
反思:应用二元一次方程组解应用题时,要注意解题的步骤,解、设、答一个不能少,而由于未知数有两个,则必须根据题意找出两个等量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在ABCD中,∠ACB=25°,现将ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数( )

A.135°
B.120°
C.115°
D.100° -
科目: 来源: 题型:
查看答案和解析>>【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A.
B.
C.
D.
相关试题