【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】A
【解析】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H, ![]()
则∠EHG=∠HEF=90°,
∵∠AEF=143°,
∴∠AEH=∠AEF﹣∠HEF=53°,
∠EAH=37°,
在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,
∴EH=AEsin∠EAH≈1.2×0.60=0.72(米),
∵AB=1.2米,
∴AB+EH≈1.2+0.72=1.92≈1.9米.
故选:A.
过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AEsin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点 D,E 在△ABC的边 BC上,连接AD,AE.下面有三个等式:①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题Ⅰ“如果①② 成立,那么③成立”; 命题Ⅱ“如果①③成立,那么②成立”;命题Ⅲ“如果②③成立,那么①成立”.
(1)以上三个命题是真命题的为__________(直接作答);
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).

-
科目: 来源: 题型:
查看答案和解析>>【题目】实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成. 现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?
反思:应用二元一次方程组解应用题时,要注意解题的步骤,解、设、答一个不能少,而由于未知数有两个,则必须根据题意找出两个等量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在ABCD中,∠ACB=25°,现将ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数( )

A.135°
B.120°
C.115°
D.100° -
科目: 来源: 题型:
查看答案和解析>>【题目】方程x+2y=7在自然数范围内的解( )
A. 有无数对 B. 只有1对
C. 只有3对 D. 只有4对
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=
,CD=
,点P在四边形ABCD上,若P到BD的距离为
,则点P的个数为( ) 
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点C与点A重合,请在图中画出折痕,并求折痕的长.

相关试题