【题目】如图,已知△ABC≌△ADE,BC的延长线交AD于点M,交DE于点F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度数.
![]()
参考答案:
【答案】60°
【解析】
根据三角形内角和定理可得∠DAE=50°,再根据全等三角形的性质可得∠B=∠D=25°,∠BAC=∠DAE=50°,根据角的和差关系可得∠BAD=60°,再根据三角形外角的性质可得∠AMF的度数,最后根据∠DFB=∠AMF-∠D即可求解∠DFB的度数.
解:∵∠D=25°,∠AED=105°,
∴∠DAE=50°
又∵△ABC≌△ADE,
∴∠B=∠D=25°,∠BAC=∠DAE=50°
∵∠DAC=10°,
∴∠BAD=60°,
∵∠AMF=∠BAD+∠B=60°+25°=85°,
∴∠DFB=∠AMF-∠D=85°-25°=60°
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.试说明中点四边形EFGH是平行四边形.
探究展示:勤奋小组的解题思路:
反思交流:
(1)①上述解题思路中的“依据1”、“依据2”分别是什么?
依据1: ;依据2: ;
②连接AC,若AC=BD时,则中点四边形EFGH的形状为 ;
创新小组受到勤奋小组的启发,继续探究:
(2)如图(2),点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并说明理由;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其它条件不变,则中点四边形EFGH的形状为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知矩形AOCB的顶点O、A的坐标分别是(0,0)、(0,a),且满足
. 点D是AB上一点, M,N垂直平分OD,分别交AB,OD,OC于点M,E,N,连接OM,DN.(1)填空:a = ;
(2)求证:四边形MOND是菱形;
(3)若F为OA的中点,连接EF,且满足EF+OE=9,求四边形MOND的周长和面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,且
,
,且
,请按照图中所标注的数据计算图中实线所围成的图形的面积
______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是面积为
的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号). 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多6元,用10000元购买经典著作与用7000元购买传说故事的本数相同,这两类书籍的单价各是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,三个半圆依次相外切,它们的圆心都在x轴的正半轴上并与直线y=
x相切,设半圆C1、半圆C2、半圆C3的半径分别是r1、r2、r3 , 则当r1=1时,r3= .
相关试题