【题目】如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F,AB=4,AD=3,OF=1.3.求四边形BCFE的周长.
![]()
参考答案:
【答案】四边形BCFE的周长为9.6.
【解析】
直接利用平行四边形的性质结合全等三角形的判定与性质进而得出FO=EO=1.3,FC=AE,得出四边形BCFE的周长为:BC+EF+AB,进而求得问题的解.
解 ∵四边形ABCD是平行四边形,
∴AO=CO,DC∥AB,
∴∠FCO=∠EAO,
在△OFC和△OEA中
∵![]()
∴△OFC≌△OEA(ASA),
∴FO=EO=1.3,FC=AE,
∴AE+BE=FC+BE=AB=4,
∴四边形BCFE的周长为BC+EF+AB=3+4+2.6=9.6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知AB∥CD,那么图1中∠PAB、∠APC、∠PCD之间有什么数量关系?并说明理由.
如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°

(1)求B,C之间的距离;(保留根号)
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:
,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2625元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C1处,连接C1B,则BC1的最小值为( )

A.2
B.3
C.3
D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中
(1)写出点A,B,C的坐标.
(2)作出△ABC关于y轴的对称图形△A1B1C1.
(3)写出点A1,B1,C1的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=2,BC=4,点M、N分别在边AD和BC上,沿MN折叠四边形ABCD,使点A、B分别落在A1、B1处,得四边形A1B1NM,其中点B1在DC上,过点M作ME⊥BC于点E,连接BB1 , 给出下列结论:①∠MNB1=∠ABB1;②△MEN∽△BCB1;③
的值为定值;④当B1C=
DC时,AM=
,其中正确结论的序号是 . (把所有正确结论的序号都在填在横线上) 
相关试题