【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.
![]()
参考答案:
【答案】(1)EF是⊙O的切线,理由见解析;(2)
.
【解析】试题分析:(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
试题解析:(1)连接OE,
∵OA=OE,∴∠A=∠AEO,
∵BF=EF,∴∠B=∠BEF,
∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,
∴∠OEG=90°,∴EF是⊙O的切线;
(2)∵AD是⊙O的直径,∴∠AED=90°,
∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,
∵AO=2,∴OE=2,∴EG=2
,
∴阴影部分的面积=
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现。
自2016年3月l日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,累计提现金额超出1000元的部分需支付0.1%的手续费,以后每次提现支付的手续费为提现金额的0.1%.
(1)小明在今天第1次进行了提现,金额为l600元,他需支付手续费_________元;
(2)小亮自2016年3月1日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别如下:
第1次
第2次
第3次
提现金额(元)
A
b

手续费(元)
0
0.4
3.4
问:小明3次提现金额各是多少元?
(3)单笔手续费小于0.1元的,按照0.1元收取(即提现不足100元,按照100元收取手续费).小红至今共提现两次,每次提现金额都是整数,共支付手续费2.4元,第一次提现900元。求小红第二次提现金额的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上,过点C作直线
,点D在点C的左边。(1)若BD平分∠ABC,
,则
_____°;(2)如图②,若
,作∠CBA的平分线交OC于E,交AC于F,试说明
;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H.在点B运动过程中
的值是否变化?若不变,求出其值;若变化,求出变化范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一块在电脑屏幕上出现的长方形色块图,由6个不同的正方形组成。设中间最小的一个正方形边长为1,则这个长方形色块图的面积为_____________.

相关试题