【题目】如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 . ![]()
参考答案:
【答案】6
【解析】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,
∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,
∵CB′∥AB,
∴∠B′CA′=∠D,
∴△CAD∽△B′A′C,
∴
=
,
∴
=
,
解得AD=8,
∴BD=AD﹣AB=8﹣2=6.
故答案为:6.
根据△ABC绕点C按逆时针方向旋转得到△A′B′C,得到AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,由CB′∥AB,得到∠B′CA′=∠D,△CAD∽△B′A′C,得到AD=8,BD=AD﹣AB=8﹣2=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:五边形ABCDE中,AB∥CD,BC⊥AB,AB=BC=8,CD=5.
(1)说明∠A,∠E,∠D之间的数量关系;
(2)平移五边形ABCDE,使D点移动到C点,画出平移后的五边形A'B'C'CE',并求出顺次连接A、A'、E'、C、D、E、A各点所围成的图形的面积;
(3)在∠BAE和∠E'CD的内部取一点F,使∠EAF=
∠EAB,∠FCE'=
∠DCE' ,求∠AFC与∠AED之间的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的格点上.请你在图中找出一点D(仅一个点即可),连结DE,DF,使△DEF与△ABC全等,并给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D。
(1)当点M在AB上运动时,四边形OCMD的周长为________;
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a (0<a≤4),在平移过程中:
①当平移距离a=1时, 正方形OCMD与△AOB重叠部分的面积为________;
②当平移距离a是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:(只填写序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】重庆实验外国语学校每年四月初都定期举办体育文化节,初
届周华同学为了在本次活动中获得更好的成绩,他让父亲带自己进行了体能训练,他们找了条笔直的跑道
,两人都从起点
出发且一直保持匀速运动,父亲先出发两分钟后周华才出发,两人到达终点
后均停止运动,周华与父亲之间的距离
(米)与周华出发的时间
(分)的关系如图所示,当周华到达终点时,父亲离终点的距离为________米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=a1(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为 .

相关试题