【题目】如图,在平面直角坐标系中,抛物线y=a1(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为 . ![]()
参考答案:
【答案】1
【解析】解:∵抛物线y=a1(x﹣2)2+2经过点(0,0),
∴0=4a1+2,
∴a1=﹣
,
∴抛物线解析式为y=﹣
x2+2x,
∴点C坐标(4,0),A(2,2)
∵抛物线y=a2(x﹣2)2﹣3经过点(﹣1,0),
∴0=9a2﹣3,
∴a2=
,
∴抛物线解析式为y=
x2﹣
x﹣
,
∴点E坐标(5,0),B(2,﹣3)
∴S△ADE=
×6×2=6,S△OBC=
×4×3=6,
∴△ADE与△BOC的面积比为为1.
所以答案是1.
【考点精析】通过灵活运用抛物线与坐标轴的交点,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:(只填写序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】重庆实验外国语学校每年四月初都定期举办体育文化节,初
届周华同学为了在本次活动中获得更好的成绩,他让父亲带自己进行了体能训练,他们找了条笔直的跑道
,两人都从起点
出发且一直保持匀速运动,父亲先出发两分钟后周华才出发,两人到达终点
后均停止运动,周华与父亲之间的距离
(米)与周华出发的时间
(分)的关系如图所示,当周华到达终点时,父亲离终点的距离为________米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )

A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲同学手中藏有三张分别标有数字
、
、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释. -
科目: 来源: 题型:
查看答案和解析>>【题目】作为网红城市的重庆,五一节小长假将迎来旅行的高峰,为方便外地游客的出行,重庆市某约车公司推出了一种新型的打车方式,该打车方式的费用收取是按照行驶的路程进行分段计费.小李选用了该打车方式出行,图中折线是小李打车所付车费y(元)与路程x(千米)之间的关系,请根据图象信息,解决下列问题
(1)若小李打车的路程为26千米,则小李所付的车费为 ;
(2)请求出当3≤x≤6时车费y(元)与路程x(千米)之间的关系式;
(3)若小李支付的车费为37元,求小李打车的路程.

相关试题