【题目】如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=
AB.![]()
(1)求证:EF⊥AG;
(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?
(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB=S△OAB , 求△PAB周长的最小值.
参考答案:
【答案】
(1)
证明:∵四边形ABCD是正方形,
∴AD=AB,∠EAF=∠ABG=90°,
∵点E、G分别是边AD、BC的中点,AF=
AB.
∴
=
,
=
,
∴
,
∴△AEF∽△BAG,
∴∠AEF=∠BAG,
∵∠BAG+∠EAO=90°,
∴∠AEF+∠EAO=90°,
∴∠AOE=90°,
∴EF⊥AG;
(2)
解:成立;理由如下:
根据题意得:
=
,
∵
=
,
∴
,
又∵∠EAF=∠ABG,
∴△AEF∽△BAG,
∴∠AEF=∠BAG,
∵∠BAG+∠EAO=90°,
∴∠AEF+∠EAO=90°,
∴∠AOE=90°,
∴EF⊥AG
(3)
解:过O作MN∥AB,交AD于M,BC于N,如图所示:
![]()
则MN⊥AD,MN=AB=4,
∵P是正方形ABCD内一点,当S△PAB=S△OAB,
∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,
此时PA=PB,PM=
MN=2,
连接EG、PA、PB,则EG∥AB,EG=AB=4,
∴△AOF∽△GOE,
∴
=
,
∵MN∥AB,
∴
=
,
∴AM=
AE=
×2=
,
由勾股定理得:PA=
=
,
∴△PAB周长的最小值=2PA+AB=
+4.
【解析】(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出
,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可;(2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论;(3)过O作MN∥AB,交AD于M,BC于N,则MN⊥AD,MN=AB=4,由三角形面积关系得出点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=
MN=2,连接EG,则EG∥AB,EG=AB=4,证明△AOF∽△GOE,得出
=
,证出
=
,得出AM=
AE=
,由勾股定理求出PA,即可得出答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx(k为常数,k≠0)与双曲线y=
(m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2 
(1)求m、k的值;
(2)点P在y轴上,如果S△ABP=3k,求P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.

(1)求证:DE是⊙O的切线;
(2)若CF=2,DF=4,求⊙O直径的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣
,直线l的解析式为y=x.
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.圆内接正六边形的边长与该圆的半径相等
B.在平面直角坐标系中,不同的坐标可以表示同一点
C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根
D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等 -
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数y=
的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是( ) 
A.
B.
C.
D.
相关试题