【题目】如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2= . ![]()
参考答案:
【答案】72°
【解析】解:∵AB∥CD,∠1=54°,
∴∠ABC=∠1=54°,
又∵BC平分∠ABD,
∴∠CBD=∠ABC=54°.
∵∠CBD+∠BDC=∠DCB=180°,∠1=∠DCB,∠2=∠BDC,
∴∠2=180°﹣∠1﹣∠CBD=180°﹣54°﹣54°=72°.
故答案为:72°.
由AB∥CD,根据平行线的性质找出∠ABC=∠1,由BC平分∠ABD,根据角平分线的定义即可得出∠CBD=∠ABC,再结合三角形的内角和为180°以及对顶角相等即可得出结论.本题考查了平行线的性质、角平分线的定义以及三角形内角和定理,解题的关键是找出各角的关系.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(﹣
)﹣2﹣
+6cos30°;
(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1. -
科目: 来源: 题型:
查看答案和解析>>【题目】姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( )
A.y=3x
B.
C.
D.y=x2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6 . 其中S1=16,S2=45,S5=11,S6=14,则S3+S4=( )

A.86
B.64
C.54
D.48 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.

(1)本次问卷共随机调查了名学生,扇形统计图中m= .
(2)请根据数据信息补全条形统计图.
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?
相关试题