【题目】如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.
![]()
(1)△ABF与△CDE全等吗?为什么?
(2)求证:EG=FG.
参考答案:
【答案】(1)△ABF与△CDE全等,理由见解析;(2)见解析.
【解析】
(1)由AE=CF可得AF=CE,再用HL证明Rt△ABF≌Rt△CDE即可;
(2)先用AAS证明△DEG≌△BFG,再根据全等三角形的性质即得结论.
(1)解:△ABF与△CDE全等,理由如下:
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,
∵AE=CF,
∴AE+EF=CF+EF,即AF=CE,
在Rt△ABF和Rt△CDE中,
,
∴Rt△ABF≌Rt△CDE(HL);
(2)证明:∵Rt△ABF≌Rt△CDE,
∴BF=DE,
在△DEG和△BFG中,
,
∴△DEG≌△BFG(AAS),
∴EG=FG.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2-2
x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是x1,x2,求代数式
+
-
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某同学上学期的数学历次测验成绩如下表所示:
测验类别
平时测验
期中测验
期末测验
第1次
第2次
第3次
成绩
100
106
106
105
110
(1)该同学上学期5次测验成绩的众数为 ,中位数为 ;
(2)该同学上学期数学平时成绩的平均数为 ;
(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在甲村至乙村的公路上有一块山地正在开发,现有一
处需要爆破.已知点
与公路上的停靠站
的距离为300米,与公路上的另一停靠站
的距离为400米,且
,如图所示为了安全起见,爆破点
周围半径250米范围内不得进入,问在进行爆破时,公路
段是否因为有危险而需要暂时封锁?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.
(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其满足下列条件(三个图形互不相同):
(1)在图①中所画的四边形中,∠D为钝角,且四边形是轴对称图形.
(2)在图②中所画的四边形中,∠D为锐角,且四边形是中心对称图形.
(3)在图③所画的四边形中,∠D为直角,且四边形面积为5平方单位.

相关试题