【题目】填空完成推理过程:
如图,∠1=∠2,∠A=∠D, 求证:∠B=∠C.
![]()
证明:∵∠1=∠2(已知),
∠1=∠3( ),
∴∠2=∠3(等量代换).
∴AF∥________( ).
∴∠D=∠4(两直线平行,同位角相等 ).
∵∠A=∠D(已知),
∴∠A=∠4(等量代换).
∴AB∥CD(内错角相等,两直线平行).
∴∠B=∠C( ).
参考答案:
【答案】对顶角相等;DE;同位角相等,两直线平行;两直线平行,内错角相等.
【解析】
先根据已知条件,判定AF∥DE,进而得出∠A=∠4,再判定AB∥CD,最后根据平行线的性质,即可得出∠B=∠C.
证明:∵∠1=∠2(已知),
∠1=∠3 (对顶角相等)
∴∠2=∠3(等量代换)
∴AF∥DE(同位角相等,两直线平行)
∴∠D=∠4(两直线平行,同位角相等)
∵∠A=∠D(已知),
∴∠A=∠4(等量代换)
∴AB∥CD(内错角相等,两直线平行)
∴∠B=∠C(两直线平行,内错角相等)
-
科目: 来源: 题型:
查看答案和解析>>【题目】为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面
与通道
平行),通道水平宽度
为8米,
,通道斜面
的长为6米,通道斜面
的坡度
.(1)求通道斜面
的长为 米;(2)为增加市民行走的舒适度,拟将设计图中的通道斜面
的坡度变缓,修改后的通道斜面
的坡角为30°,求此时
的长.(结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线
交y轴于点A,交直线x=6于点B.(1)填空:抛物线的对称轴为x=_________,点B的纵坐标为__________(用含a的代数式表示);
(2)若直线AB与x轴正方向所夹的角为45°时,抛物线在x轴上方,求
的值;(3)记抛物线在A、B之间的部分为图像G(包含A、B两点),若对于图像G上任意一点
,总有
≤3,求a的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_________处。(填数字)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选
取该校100名学生进行调查,要求每名学生只选出一类自己最喜爱的节目,根据调查结果 绘制了不完整的条形图和扇形统计图(如图),

根据图中提供的信息,解答下列问题:
(1)这次抽样调查的女生人数是_______人;
(2)扇形统计图中, “A”组对应的圆心角度数为_______,并将条形图中补充完整;
(3)若该校有 1800 名学生,试估计全校最喜欢新闻和戏曲的学生一共有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长青农产品加工厂与 A,B 两地有公路、铁路相连.这家工厂从 A 地购买一批原料甲运回工厂,经过加工后制成产品乙运到 B 地,其中原料甲和产品乙的重量都是正整数.
已知铁路运价为 2 元/(吨·千米),公路运价为 8 元/(吨·千米).

(1)若由 A 到 B 的两次运输中,原料甲比产品乙多 9 吨,工厂计划支出铁路运费超 过 5700 元,公路运费不超过 9680 元.问购买原料甲有哪几种方案,分别是多少吨?
(2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的 财政补贴,综合惠农政策后公路运输价格下降 m( 0 m 4 且 m 为整数)元, 若由 A 到 B 的两次运输中,铁路运费为 5760 元,公路运费为 5100 元,求 m 的 值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,BC=12,E为边AC的中点,
(1)如图1,过点E作EH⊥BC,垂足为点H,求线段CH的长;
(2)作线段BE的垂直平分线分别交边BC、BE、AB于点D、O、F.
①如图2,当∠BAC=90°时,求BD的长;
②如图3,设tan∠ACB=x,BD=y,求y与x之间的函数表达式和tan∠ACB的最大值.

相关试题