【题目】下列运算正确的是( )
A.aa2=a2
B.(ab)2=ab
C.3﹣1= ![]()
D.![]()
参考答案:
【答案】C
【解析】解:A、原式=a3,所以A选项不符合题意;
B、原式=a2b2,所以B选项不符合题意;
C、原式=
,所以C选项符合题意;
D、原式=2
,所以D选项不符合题意.
所以答案是:C.
【考点精析】关于本题考查的整数指数幂的运算性质和同底数幂的乘法,需要了解aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数);同底数幂的乘法法则aman=am+n(m,n都是正数)才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠A=40°
(1)如图1,若两内角∠ABC、∠ACB的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 .为什么有这样的关系?请证明它;
(2)如图2,若内角∠ABC、外角∠ACE的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 ;
(3)如图3,若两外角∠EBC、∠FCB的角平分线交于点P,则∠P= ,∠A与∠P之间的数量关系是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某学校草场一角,在长为b米,宽为a米的长方形场地中间,有并排两个大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为c米.
(1)用代数式表示这两个篮球场的占地面积.

(2)当a=30,b=40,c=3时,计算出一个篮球场的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=
.
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数y=﹣x2+4x﹣
.①当点B(m,
)在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣
的相关函数的最大值和最小值;
(3)在平面直角坐标系中,点M,N的坐标分别为(﹣
,1),(
,1),连结MN.直接写出线段MN与二
次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图1,设点P的运动时间为t(s),那么t= (s)时,△PBC是直角三角形;
(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?
(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有若干张如图1所示的正方形纸片A,B和长方形纸片C.
(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:______ ;
(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是______ ,并请你在图3位置画出拼成的长方形;
(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=30,C为射线AB上一点,BC比AC的4倍少20,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②运动过程中,QM的长度保持不变;③AB=4NQ;④当BQ=PB时,t=12,其中正确结论的个数是( )

A. 1B. 2C. 3D. 4
相关试题