【题目】已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图1,设点P的运动时间为t(s),那么t= (s)时,△PBC是直角三角形;
(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?
(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.如果动点P、Q都以1cm/s的速度同时出发.请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.
![]()
参考答案:
【答案】(1)
;(2)t=1或2(s);(3)t=1(s);(4)面积相等,理由见解析
【解析】
(1)当△PBC是直角三角形时,∠B=60°,所以BP=1.5cm,即可算出t的值;
(2)因为∠B=60°,可选取∠BPQ=90°或∠BQP=90°,然后根据勾股定理计算出BP长,即可算出t的大小;
(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,然后可证明△APD是直角三角形,即可根据题意求出t的值;
(4)面积相等.可通过同底等高验证.
解:(1)当△PBC是直角三角形时,∠B=60°,
∠BPC=90°,所以BP=1.5cm,
所以t=
.
(2)当∠BPQ=90°时,BP=0.5BQ,
3﹣t=0.5t,所以t=2;
当∠BQP=90°时,BP=2BQ,
3﹣t=2t,所以t=1;
所以t=1或2(s);
(3)因为∠DCQ=120°,当△DCQ是等腰三角形时,CD=CQ,
所以∠PDA=∠CDQ=∠CQD=30°,
又因为∠A=60°,
所以AD=2AP,2t+t=3,
解得t=1(s);
(4)相等,如图所示:
![]()
作PE⊥AD于E,QG⊥AD延长线于G,则PE∥QG,则易知∠G=∠AEP,∠A=∠ACB=∠QCG=60°,
在△EAP和△GCQ中,
因为
,
所以△EAP≌△GCQ(AAS),
所以PE=QG,所以,△PCD和△QCD同底等高,所以面积相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某学校草场一角,在长为b米,宽为a米的长方形场地中间,有并排两个大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为c米.
(1)用代数式表示这两个篮球场的占地面积.

(2)当a=30,b=40,c=3时,计算出一个篮球场的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=
.
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数y=﹣x2+4x﹣
.①当点B(m,
)在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣
的相关函数的最大值和最小值;
(3)在平面直角坐标系中,点M,N的坐标分别为(﹣
,1),(
,1),连结MN.直接写出线段MN与二
次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.aa2=a2
B.(ab)2=ab
C.3﹣1=
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有若干张如图1所示的正方形纸片A,B和长方形纸片C.
(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:______ ;
(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是______ ,并请你在图3位置画出拼成的长方形;
(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=30,C为射线AB上一点,BC比AC的4倍少20,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②运动过程中,QM的长度保持不变;③AB=4NQ;④当BQ=PB时,t=12,其中正确结论的个数是( )

A. 1B. 2C. 3D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司有A、B两种客车,它们的载客量和租金如下表,星星中学根据实际情况,计划用A、B型车共5辆,同时送七年级师生到校基地参加社会实践活动.
A
B
载客量(人/辆)
40
20
租金(元/辆)
200
150
(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?
(2)在(1)的条件下,若七年级师生共有150人,问哪种租车方案最省钱?
相关试题